Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 58(22): 11626-32, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-20964435

RESUMO

Glucosinolate composition was determined in wild radish accessions from eight states in the northeastern and southern United States to determine the variability of production among accessions. Glucosinolates were evaluated from roots, leaves, flowers, primary, and secondary branches. Seventeen glucosinolates were identified, with glucoerucin, glucoraphenin, glucobrassicin, and gluconasturtiin contributing 90% to 100% of the total glucosinolates. Flowers contained the highest glucosinolate concentrations, 12.07 to 55.36 µmol/g, but flowers contributed only 5.3 to 21.3% to the total glucosinolates. Of the eight accessions, the Mississippi accession produced significantly higher levels of total glucosinolates and glucosinolates which can be degraded to isothiocyanates per plant, totals of 618.97 and 563.53 µmol/plant, respectively. Total plant biomass did not differ between accessions indicating a difference in the ability of the Mississippi accession to produce glucosinolates. Further studies are needed to determine if this accession would consistently produce higher glucosinolate levels under different environmental conditions.


Assuntos
Glucosinolatos/análise , Extratos Vegetais/análise , Raphanus/química , Glucosinolatos/metabolismo , Extratos Vegetais/metabolismo , Raphanus/metabolismo
2.
J Agric Food Chem ; 58(6): 3309-15, 2010 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-20163113

RESUMO

Wild radish (Raphanus raphanistrum L.) produces glucosinolates (GSL), which are important for its use as a biofumigation or allelopathic plant for weed management. Total GSL concentrations and individual GSLs were quantified in different plant parts at different developmental stages. Eight GSLs were found in various plant tissues but glucoerucin, glucoraphenin, and glucotropaeolin comprised >90% of the total GSLs. All three are degraded to isothiocyanates, which are associated with weed suppression. Maximum GSL concentration (1942.2 micromol/plant) occurred at 50% flowering stage prior to the time of maximum biomass production, when GSL concentration was 1246.65 mumol/plant. Roots contributed <15% of the total GSL. The highest concentration of GSLs was in flowers at flowering stage, but due to the low biomass they contributed only 11.83% to the total GSL. On the basis of these results, wild radish should be incorporated into soil at 50% flowering to provide the most GSLs for weed suppression.


Assuntos
Glucosinolatos/análise , Extratos Vegetais/análise , Raphanus/química , Raphanus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...