Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Bioallied Sci ; 7(4): 250-3, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26681876

RESUMO

INTRODUCTION: Herbals drugs became a boon for mankind since ancient times and still are used worldwide for the treatment of various human ailments. The safety of alternative medicinal preparations has been questioned due to reports of unwanted side effects. To maintain the quality and efficacy of these drugs, it is essential to standardize them in order to avoid the use of substandard or adulterated medicines in the market. Unani system of medicine mainly focuses on the treatment by natural drugs. Habb-e-Banafsha Qawi is useful in a cough, catarrah, and coryza. MATERIALS AND METHODS: Physiochemical constants of Habb-e-Banafsha Qawi were determined through organoleptic characters, macro- and micro-scopic characters, ash value, solubility, pH values. Chromatographic fingerprints were developed using thin layer chromatography method. Aflatoxin (AF) contamination, heavy metal, and pesticide residues were also evaluated by standard methods. OBJECTIVES: In the present study, an attempt has been made to develop standard operating procedure and physiochemical parameters to monitor the quality of a Unani poly-herbal formulation, Habb-e-Banafsha Qawi. RESULTS: The tablets tasted sweetish bitter with a pleasant odor, water soluble and acidic in nature. R f values were almost same in all the extracts. No AF, heavy metal, and pesticide residues were observed. CONCLUSIONS: It may be concluded that the values and chromatographic fingerprints obtained can be used for quality evaluation and to set new pharmacopoeial standards for the preparation of Habb-e-Banafsha Qawi.

2.
Plant Physiol Biochem ; 94: 57-64, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26042546

RESUMO

miRNAs are emerging as potential regulators of the gene expression. Their proven promising role in regulating biosynthetic pathways related gene networks may hold the key to understand the genetic regulation of these pathways which may assist in selection and manipulation to get high performing plant genotypes with better secondary metabolites yields and increased biomass. miRNAs associated with genes of steviol glycosides biosynthetic pathway, however, have not been identified so far. In this study miRNAs targeting genes of steviol glycosides biosynthetic pathway were identified for the first time whose precursors were potentially generated from ESTs and nucleotide sequences of Stevia rebaudiana. Thereafter, stem-loop coupled real time PCR based expressions of these miRNAs in different tissues of Stevia rebaudiana were investigated and their relationship pattern was analysed with the expression levels of their target mRNAs as well as steviol glycoside contents. All the miRNAs investigated showed differential expressions in all the three tissues studied, viz. leaves, flowers and stems. Out of the eleven miRNAs validated, the expression levels of nine miRNAs (miR319a, miR319b, miR319c, miR319d, miR319e, miR319f, miR319h, miRstv_7, miRstv_9) were found to be inversely related, while expression levels of the two, i.e. miR319g and miRstv_11 on the contrary, showed direct relation with the expression levels of their target mRNAs and steviol glycoside contents in the leaves, flowers and stems. This study provides a platform for better understanding of the steviol glycosides biosynthetic pathway and these miRNAs can further be employed to manipulate the biosynthesis of these metabolites to enhance their contents and yield in S. rebaudiana.


Assuntos
Diterpenos do Tipo Caurano/biossíntese , Regulação da Expressão Gênica de Plantas/fisiologia , Glicosídeos/biossíntese , MicroRNAs/biossíntese , RNA de Plantas/biossíntese , Stevia/metabolismo , Perfilação da Expressão Gênica , Glicosídeos/genética , MicroRNAs/genética , RNA de Plantas/genética , Stevia/genética
3.
J Pharm Bioallied Sci ; 5(1): 21-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23559820

RESUMO

Chitin, the second most abundant polysaccharide in nature after cellulose, is found in the exoskeleton of insects, fungi, yeast, and algae, and in the internal structures of other vertebrates. Chitinases are enzymes that degrade chitin. Chitinases contribute to the generation of carbon and nitrogen in the ecosystem. Chitin and chitinolytic enzymes are gaining importance for their biotechnological applications, especially the chitinases exploited in agriculture fields to control pathogens. Chitinases have a use in human health care, especially in human diseases like asthma. Chitinases have wide-ranging applications including the preparation of pharmaceutically important chitooligosaccharides and N-acetyl D glucosamine, preparation of single-cell protein, isolation of protoplasts from fungi and yeast, control of pathogenic fungi, treatment of chitinous waste, mosquito control and morphogenesis, etc. In this review, the various types of chitinases and the chitinases found in different organisms such as bacteria, plants, fungi, and mammals are discussed.

4.
J Leukoc Biol ; 86(4): 833-45, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19620252

RESUMO

MIP-1beta/CCL4 is a principal regulator of macrophage migration and signals through CCR5. Several protein kinases are linked to CCR5 in macrophages including the src kinase Lyn, PI3K, focal adhesion related kinase Pyk2, and members of the MAPK family, but whether and how these kinases regulate macrophage chemotaxis are not known. To define the role of these signaling molecules, we examined the functions and interactions of endogenous proteins in primary human macrophages. Using siRNA gene silencing and pharmacologic inhibition, we show that chemotaxis in response to CCR5 stimulation by MIP-1beta requires activation of Pyk2, PI3K p85, and Lyn, as well as MAPK ERK. MIP-1beta activation of CCR5 triggered translocation of Pyk2 and PI3K p85 from the cytoplasm to colocalize with Lyn at the plasma membrane with formation of a multimolecular complex. We show further that arrestins were recruited into the complex, and arrestin down-regulation impaired complex formation and macrophage chemotaxis toward MIP-1beta. Together, these results identify a novel mechanism of chemokine receptor regulation of chemotaxis and suggest that arrestins may serve as scaffolding proteins linking CCR5 to multiple downstream signaling molecules in a biologically important primary human cell type.


Assuntos
Arrestina/imunologia , Quimiocina CCL4/farmacologia , Quimiotaxia/efeitos dos fármacos , Macrófagos/enzimologia , Complexos Multienzimáticos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Membrana Celular/enzimologia , Membrana Celular/imunologia , Quimiocina CCL4/imunologia , Quimiocina CCL4/metabolismo , Quimiotaxia/imunologia , Citoplasma/enzimologia , Citoplasma/imunologia , Quinase 2 de Adesão Focal/imunologia , Quinase 2 de Adesão Focal/metabolismo , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Complexos Multienzimáticos/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/imunologia , Receptores CCR5/imunologia , Receptores CCR5/metabolismo , Transdução de Sinais/imunologia , Quinases da Família src/imunologia , Quinases da Família src/metabolismo
5.
J Immunol ; 181(7): 4632-7, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18802065

RESUMO

Infiltration of activated monocytes into the brain is a prerequisite for the development of various neurological disorders such as HIV-associated dementia, multiple sclerosis, and other inflammatory processes. In these pathologies, the chemokine SDF-1alpha (CXCL12) is over-expressed and might attract monocytes into the CNS. We demonstrate here that SDF-1alpha stimulates migration of monocytes through its receptor, CXCR4, and decreases monocyte adherence to surfaces coated with ICAM-1, a ligand for beta(2) integrins. SDF-1alpha also decreases monocyte adherence to brain microvascular endothelial cells (BMVEC) that are activated with TNF-alpha, IL-1beta, or recombinant envelope glycoprotein from HIV-1, which increase BMVEC expression of ICAM-1. The decreased adherence is linked to down-regulation on monocytes of the activation-dependent epitope of the beta(2) integrin LFA-1 by SDF-1alpha. Knockdown of Lyn in monocytes using small interfering RNA decreases SDF-1alpha-mediated migration and prevents the inhibition of monocyte attachment to ICAM-1 and activated BMVEC. Thus, in SDF-1alpha-stimulated monocytes, Lyn acts as a positive regulator of migration and a negative regulator of adhesion to BMVEC through the LFA-1 integrin. These results provide a novel Lyn-mediated signaling mechanism for the regulation of monocyte movement at the blood-brain barrier.


Assuntos
Encéfalo/irrigação sanguínea , Quimiocina CXCL12/fisiologia , Quimiotaxia de Leucócito/imunologia , Endotélio Vascular/citologia , Antígeno-1 Associado à Função Linfocitária/fisiologia , Monócitos/imunologia , Quinases da Família src/fisiologia , Encéfalo/citologia , Encéfalo/enzimologia , Antígenos CD18/metabolismo , Adesão Celular/imunologia , Inibição de Migração Celular/imunologia , Quimiocina CXCL12/metabolismo , Regulação para Baixo/imunologia , Endotélio Vascular/enzimologia , Endotélio Vascular/imunologia , Humanos , Molécula 1 de Adesão Intercelular/biossíntese , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Ligantes , Antígeno-1 Associado à Função Linfocitária/metabolismo , Microcirculação/imunologia , Monócitos/enzimologia , Monócitos/metabolismo , Receptores CXCR4/metabolismo , Receptores CXCR4/fisiologia , Transdução de Sinais/imunologia , Quinases da Família src/metabolismo
6.
Blood ; 111(10): 5182-6, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18339898

RESUMO

Stromal-derived factor-1 (SDF-1) and its receptor, CXCR4, are essential for normal hematopoietic progenitor cell movement and adherence within the bone marrow microenvironment. In leukemia, the BCR-ABL1 oncoprotein inhibits SDF-1-dependent cell trafficking within the bone marrow through a mechanism that is not fully understood. Here, we report that BCR-ABL1 in malignant cells constitutively increases expression of activation-dependent epitopes of the beta(2) integrin LFA-1. This is associated with the complete loss of responsiveness of LFA-1 to SDF-1-induced "inside-out" signaling involving CXCR4 and Lyn, leading to aberrant adhesive responses. These data provide a novel, LFA-1-mediated mechanism whereby BCR-ABL1 inhibits SDF-1 action in malignant progenitors.


Assuntos
Quimiocina CXCL12/fisiologia , Proteínas de Fusão bcr-abl/fisiologia , Leucemia/patologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Adesão Celular , Movimento Celular , Células Cultivadas , Humanos , Receptores CXCR4/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo
7.
Mol Cancer Ther ; 5(6): 1405-14, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16818498

RESUMO

Topoisomerase II is a target for clinically active anticancer drugs. Drugs targeting these enzymes act by preventing the religation of enzyme-DNA covalent complexes leading to protein-DNA adducts that include single- and double-strand breaks. In mammalian cells, nonhomologous repair pathways are critical for repairing topoisomerase II-mediated DNA damage. Because topoisomerase II-targeting agents, such as etoposide, can also induce chromosomal translocations that can lead to secondary malignancies, understanding nonhomologous repair of topoisomerase II-mediated DNA damage may help to define strategies that limit this critical side effect on an important class of anticancer agents. Using Saccharomyces cerevisiae as a model eukaryote, we have determined the contribution of genes required for nonhomologous end-joining (NHEJ) for repairing DNA damage arising from treatment with topoisomerase II poisons, such as etoposide and 4'-(9-acridinylamino)methanesulfon-m-anisidide (mAMSA). To increase cellular sensitivity to topoisomerase II poisons, we overexpressed either wild-type or drug-hypersensitive alleles of yeast topoisomerase II. Using this approach, we found that yku70 (hdf1), yku80 (hdf2), and other genes required for NHEJ were important for cell survival following exposure to etoposide. The clearest increase in sensitivity was observed with cells overexpressing an etoposide-hypersensitive allele of TOP2 (Ser740Trp). Hypersensitivity was also seen in some end-joining defective mutants exposed to the intercalating agent mAMSA, although the increase in sensitivity was less pronounced. To confirm that the increase in sensitivity was not solely due to the elevated expression of TOP2 or due to specific effects of the drug-hypersensitive TOP2 alleles, we also found that deletion of genes required for NHEJ increased the sensitivity of rad52 deletions to both etoposide and mAMSA. Taken together, these results show a clear role for NHEJ in the repair of DNA damage induced by topoisomerase II-targeting agents and suggest that this pathway may participate in translocations generated by drugs, such as etoposide.


Assuntos
Sobrevivência Celular , Dano ao DNA/genética , DNA Topoisomerases Tipo II/metabolismo , Recombinação Genética/genética , Saccharomyces cerevisiae/genética , Amsacrina/farmacologia , Antineoplásicos/farmacologia , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Etoposídeo/farmacologia , Regulação Fúngica da Expressão Gênica , Inibidores da Síntese de Ácido Nucleico/farmacologia , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Inibidores da Topoisomerase II
8.
Proc Natl Acad Sci U S A ; 103(24): 8953-8, 2006 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-16751265

RESUMO

Agents targeting topoisomerases are active against a wide range of human tumors. Stabilization of covalent complexes, converting topoisomerases into DNA-damaging agents, is an essential aspect of cell killing by these drugs. A unique aspect of the repair of topoisomerase-mediated DNA damage is the requirement for pathways that can remove protein covalently bound to DNA. Tyrosyl-DNA phosphodiesterase (Tdp1) is an enzyme that removes phosphotyrosyl moieties bound to the 3' end of DNA. Cells lacking Tdp1 are hypersensitive to camptothecin, consistent with a role for Tdp1 in processing 3' phosphotyrosyl protein-DNA covalent complexes. Because Top2p forms a 5' phosphotyrosyl linkage with DNA, previous work predicted that Tdp1p would not be active against lesions involving Top2p. We found that deletion of the TDP1 gene in yeast confers hypersensitivity to Top2 targeting agents. Combining tdp1 mutations with deletions of genes involved in nonhomologous end joining, excision repair, or postreplication repair enhanced sensitivity to Top2 targeting drugs over the level seen with single mutants, suggesting that Tdp1 may function in collaboration with multiple pathways involved in strand break repair. tdp1 mutations can sensitize yeast cells to drugs targeting Top2 even when TOP1 is deleted. Finally, bacterially expressed yeast Tdp1p is able to remove a peptide derived from yTop2 that is covalently bound to DNA by a 5' phosphotyrosyl linkage. Our results show that Tdp1 plays more general roles in DNA repair than repair of Top1 mediated DNA damage, and may participate in repairing many types of base damage to DNA.


Assuntos
Antígenos de Neoplasias/metabolismo , Dano ao DNA , Reparo do DNA , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Antígenos de Neoplasias/genética , Enzimas Reparadoras do DNA , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Etoposídeo/metabolismo , Humanos , Mutação , Inibidores da Síntese de Ácido Nucleico/metabolismo , Diester Fosfórico Hidrolases/genética , Proteínas de Ligação a Poli-ADP-Ribose , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
9.
Eukaryot Cell ; 3(1): 82-90, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14871939

RESUMO

DNA topoisomerases play critical roles in a wide range of cellular processes by altering DNA topology to facilitate replication, transcription, and chromosome segregation. Topoisomerases alter DNA topology by introducing transient DNA strand breaks that involve a covalent protein DNA intermediate. Many agents have been found to prevent the religation of DNA strand breaks induced by the enzymes, thereby converting the enzymes into DNA-damaging agents. Repair of the DNA damage induced by topoisomerases is significant in understanding drug resistance arising following treatment with topoisomerase-targeting drugs. We have used the fission yeast Schizosaccharomyces pombe to identify DNA repair pathways that are important for cell survival following drug treatment. S. pombe strains carrying mutations in genes required for homologous recombination such as rad22A or rad32 (homologues of RAD52 and MRE11) are hypersensitive to drugs targeting either topoisomerase I or topoisomerase II. In contrast to results observed with Saccharomyces cerevisiae, S. pombe strains defective in nucleotide excision repair are also hypersensitive to topoisomerase-targeting agents. The loss of DNA replication or DNA damage checkpoints also sensitizes cells to both topoisomerase I and topoisomerase II inhibitors. Finally, repair genes (such as the S. pombe rad8+ gene) with no obvious homologs in other systems also play important roles in causing sensitivity to topoisomerase drugs. Since the pattern of sensitivity is distinct from that seen with other systems (such as the S. cerevisiae system), our results highlight the usefulness of S. pombe in understanding how cells deal with the unique DNA damage induced by topoisomerases.


Assuntos
Dano ao DNA , Reparo do DNA , Etoposídeo/análogos & derivados , Inibidores da Topoisomerase I , Inibidores da Topoisomerase II , Camptotecina/farmacologia , Ciclo Celular , Relação Dose-Resposta à Radiação , Inibidores Enzimáticos/farmacologia , Etoposídeo/farmacologia , Genótipo , Mutação , Plasmídeos/metabolismo , Recombinação Genética , Schizosaccharomyces , Sensibilidade e Especificidade , Temperatura , Fatores de Tempo , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...