Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1181317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37485518

RESUMO

Introduction: Conservation agriculture (CA) is gaining attention in the South Asia as an environmentally benign and sustainable food production system. The knowledge of the soil bacterial community composition along with other soil properties is essential for evaluating the CA-based management practices for achieving the soil environment sustainability and climate resilience in the rice-wheat-greengram system. The long-term effects of CA-based tillage-cum-crop establishment (TCE) methods on earthworm population, soil parameters as well as microbial diversity have not been well studied. Methods: Seven treatments (or scenarios) were laid down with the various tillage (wet, dry, or zero-tillage), establishment method (direct-or drill-seeding or transplantation) and residue management practices (mixed with the soil or kept on the soil surface). The soil samples were collected after 7 years of experimentation and analyzed for the soil quality and bacterial diversity to examine the effect of tillage-cum-crop establishment methods. Results and Discussion: Earthworm population (3.6 times), soil organic carbon (11.94%), macro (NPK) (14.50-23.57%) and micronutrients (Mn, and Cu) (13.25 and 29.57%) contents were appreciably higher under CA-based TCE methods than tillage-intensive farming practices. Significantly higher number of OTUs (1,192 ± 50) and Chao1 (1415.65 ± 14.34) values were observed in partial CA-based production system (p ≤ 0.05). Forty-two (42) bacterial phyla were identified across the scenarios, and Proteobacteria, Actinobacteria, and Firmicutes were the most dominant in all the scenarios. The CA-based scenarios harbor a high abundance of Proteobacteria (2-13%), whereas the conventional tillage-based scenarios were dominated by the bacterial phyla Acidobacteria and Chloroflexi and found statistically differed among the scenarios (p ≤ 0.05). Composition of the major phyla, i.e., Proteobacteria, Actinobacteria, and Firmicutes were associated differently with either CA or farmers-based tillage management practices. Overall, the present study indicates the importance of CA-based tillage-cum-crop establishment methods in shaping the bacterial diversity, earthworms population, soil organic carbon, and plant nutrient availability, which are crucial for sustainable agricultural production and resilience in agro-ecosystem.

2.
Sci Rep ; 12(1): 3753, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260662

RESUMO

Conservation agriculture (CA), which encompasses minimum soil disturbance, residue retention either through crop residue, or cover crops and crop diversification-based crop management practices can modify the status of pest dynamics and activities under the changing climatic scenarios. CA has been advocated extensively to optimize the use of available resources, maintain the environmental quality, enhance crop productivity, and reduce the climate change impacts. Information related to the impacts of long-term CA-production systems under rice-based cropping systems on pest status is lacking, particularly in middle Indo-Gangetic Plains (MIGP). Under CA, puddling is completely avoided, and rice is directly sown or transplanted to maintain better soil health. Different sets of experimentations including farmers practice, partial CA and full CA (CA) as treatments in rice-based cropping systems, were established from 2009, 2015 and 2016 to understand the long-term impacts of CA on pest dynamics. In this study, direct and indirect effects of tillage (zero, reduced and conventional tillage), residue retention and cropping sequences on abundance and damage by pests were investigated. After 4-5 years of experimentation, populations of oriental armyworm [Mythinma (Leucania) (Pseudaletia) separata (Wlk.)] in wheat, mealybug [Brevennia rehi (Lindinger)] and bandicoot rat [Bandicota bengalensis (Gray)] in rice were found to increase abnormally in CA-based production systems. Conventionally tilled plots had a significant negative effect while residue load in zero-tilled plots had a significant positive effect on larval population build-up of M. separata. Zero tillage had a higher infestation of mealybug (52-91% infested hills) that used grassy weeds (Echinochloa colona, Echinochloa crusgalli, Cynodon dactylon, Leptochloa chinensis and Panicum repense) as alternate hosts. Cropping sequences and no disturbance of soil and grassy weeds had higher live burrow counts (4.2 and 13.7 burrows as compared to 1.47 and 7.53 burrows per 62.5 m2 during 2019-2020 and 2020-2021, respectively) and damaged tillers (3.4%) in CA-based practices. Based on the present study, pest management strategies in CA need to be revisited with respect to tillage, residue retention on soil surface, grassy weeds in field and cropping sequences to deliver the full benefits of CA in MIGP to achieve the sustainable development goals under the climate change scenarios.


Assuntos
Oryza , Agricultura/métodos , Ásia , Produtos Agrícolas , Solo/química
3.
Eur J Soil Sci ; 72(4): 1742-1761, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34413692

RESUMO

Deteriorating soil health, diminishing soil organic carbon (SOC), development of subsurface hard compact layer and declining system productivity are barriers to achieving sustainable production in the traditional rice-wheat cropping system (TA) in the eastern Indo-Gangetic Plain of India. Conservation agriculture (CA), which favours minimum soil disturbance, crop residue retention and crop diversification could be a viable alternative to the TA to address most of those major problems. With that in mind, a long-term experiment is being implemented at ICAR-RCER, Patna, Bihar, India, with four treatments: (a) TA, (b) full CA (fCA) and (c and d) partial CA (pCA1 and pCA2), differing in crop establishment methods, cropping system and crop residue management in a randomized complete block design. Measurement of soil health parameters was carried out in the 11th year of the experiment. The results revealed a beneficial effect of CA and 46 and 40% increase in SOC concentration and stock, respectively, under fCA over TA in the 0-7.5-cm soil layer. The effect of partial CA (pCA1 and pCA2) was variable, but an increasing trend was always observed under pCA compared to TA. There was an enrichment in SOC content of aggregates under CA irrespective of size class; however, no relation was found between SOC content and aggregate diameter. The contribution of macroaggregates to SOC stock was larger (36-66%) under CA in the 0-7.5-cm soil layer. Adoption of CA improved the macroaggregate content, MWD and GMD of aggregates, and aggregation ratio. Soil macropore content was greater under fCA, whereas other parameters were similar among treatments. The impact of CA was mostly limited to 0-7.5 cm soil layer and a maximum up to 15 cm soil depth while evaluation until 60 cm soil depth was realized. The yield of rice in CA was comparable to or higher than in TA, whereas the system rice equivalent yield was always higher (38-53%) under CA than under the conventional practices. Therefore, a CA-based cropping system must be encouraged, to increase SOC status, improve aggregation stability and, consequently, sustain or increase system productivity, in order to achieve food and nutritional security in the eastern Indo-Gangetic Plain of India. HIGHLIGHTS: Effects of long-term conservation agriculture (CA) on soil C, aggregation and yield were evaluated.CA improved SOC concentration and stock by 46 and 40%, as well as macroaggregate SOC stock by 36-66%.Macro-aggregation and mean weight diameter improved in CA but was mostly limited to a shallow soil depth.CA can be promoted for sustainability of a rice-wheat system due to higher productivity (38-53%).

4.
Environ Sci Pollut Res Int ; 28(1): 246-261, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32808133

RESUMO

Rice-based cropping systems are the most energy-intensive production systems in South Asia. Sustainability of the rice-based cropping systems is nowadays questioned with declining natural resource base, soil degradation, environmental pollution, and declining factor productivity. As a consequence, the search for energy and resource conservation agro-techniques is increasing for sustainable and cleaner production. Conservation agriculture (CA) practices have been recommended for resource conservation, soil health restoration and sustaining crop productivity. The present study aimed to assess the different CA modules in rice-based cropping systems for energy conservation, energy productivity, and to define energy-economic relations. A field experiment consisted of four different tillage-based crop establishment practices (puddled-transplanted rice followed by (fb) conventional-till maize/wheat (CTTPR-CT), non-puddled transplanted rice fb zero-till maize/wheat (NPTPR-ZT), zero-till transplanted rice fb zero-till maize/wheat (ZTTPR-ZT), zero-till direct-seeded rice fb zero-till maize/wheat (ZTDSR-ZT)), with two residue management treatments (residue removal, residue retention) in rice-wheat and rice-maize rotations were evaluated for energy budgeting and energy-economic relations. Conservation-tillage treatments (NPTPR-ZT, ZTTPR-ZT, and ZTDSR-ZT) reduced the energy requirements over conventional tillage treatments, with the greater reduction in ZTTPR-ZT and ZTDSR-ZT treatments. Savings of energy in conservation-tillage treatments were attributed to reduced energy use in land preparation (69-100%) and irrigation (23-27%), which consumed a large amount of fuel energy. Conservation-tillage treatments increased grain and straw/stover yields of crops, eventually increased the output energy (6-16%), net energy (14-26%), energy ratio (25-33%), and energy productivity (23-34%) as compared with CTTPR-CT. For these energy parameters, the treatment order was ZTDSR-ZT ≥ ZTTPR-ZT > NPTPR-ZT > CTTPR-CT (p < 0.05). Crop residue retention reduced net energy, energy ratio, and energy productivity when compared with residue removal. Our results of energy-economic relations favored the "conservative hypothesis," which envisages that energy and monetary investments are not essentially the determinants of crop productivity. Thus, zero tillage-based crop establishments (ZTTPR-ZT, ZTDSR-ZT) in rice-based production systems could be the sustainable alternative to conventional tillage-based agriculture (CTTPR-CT) as they conserved non-renewable energy sources, reduced water requirement, and increased crop productivity.


Assuntos
Oryza , Agricultura , Ásia , Produtos Agrícolas , Nitrogênio/análise , Solo
5.
Geoderma ; 340: 104-114, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30996398

RESUMO

Tillage intensive cropping practices have deteriorated soil physical quality and decreased soil organic carbon (SOC) levels in rice-growing areas of South Asia. Consequently, crop productivity has declined over the years demonstrating the need for sustainable alternatives. Given that, a field experiment was conducted for six years to assess the impact of four tillage based crop establishment treatments [puddled transplant rice followed by conventional tillage in wheat/maize (CTTPR-CT), non-puddled transplant rice followed by zero-tillage in wheat/maize (NPTPR-ZT), zero-till transplant rice followed by zero-tillage in wheat/maize (ZTTPR-ZT), zero-tillage direct seeded rice followed by zero-tillage in wheat/maize (ZTDSR-ZT)], two residue management treatments [residue removal, residue retention (~33%)], and two cropping systems [rice-wheat, rice-maize] on soil aggregation, carbon pools, nutrient availability, and crop productivity. After six years of rotation, in top 0.2 m soil depth, zero-till crop establishment treatments (ZTTPR-ZT and ZTDSR-ZT) had higher (p < 0.05) total organic carbon (TOC) over conventional tillage treatment (CTTPR-CT). Zero-till crop establishment treatments increased very-labile C faction (Cfrac 1) by 21% followed by labile fraction (Cfrac 2) (16%), non-labile fraction (Cfrac 4) (13%) and less-labile fraction (Cfrac 3) (7%). Notably, higher passive C-pool in conservation tillage practices over CTTPR-CT suggests that conservation tillage could stabilize the recalcitrant form of carbon that persists longer in the soil. Meantime, zero-till crop establishment treatments had higher (p < 0.05) water stable macro-aggregates, macro-aggregates: micro-aggregates ratio and aggregate carbon content over CTTPR-CT. The treatment NPTPR-ZT significantly increased soil quality parameters over CTTPR-CT. However, the effect was not as prominent as that of ZTTPR-ZT and ZTDSR-ZT. Retention of crop residue increased (p < 0.05) TOC (12%) and soil available nutrients mainly available-P (16%), followed by available-K (12%), DTPA-extractable Zn (11%), and available-S (6%) over residue removal treatment. The constructive changes in soil properties following conservation tillage and crop residue retention led to increased crop productivity over conventional CTTPR-CT. Therefore, conservation tillage (particularly ZTTPR-ZT and ZTDSR-ZT) and crop residue retention could be recommended in tropical rice-based cropping systems for improving soil quality and production sustainability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...