Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37241880

RESUMO

In the present study, we aimed to synthesize (Ag)1-x(GNPs)x nanocomposites in variable ratios (25% GNPs-Ag, 50% GNPs-Ag, and 75% GNPs-Ag) via an ex situ approach to investigate the incremental effects of GNPs (graphene nanoparticles) on AgNPs (silver nanoparticles). The prepared nanocomposites were successfully characterized using different microscopic and spectroscopic techniques, including X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet spectroscopy, and Raman spectroscopic analysis. For the evaluation of morphological aspects, shape, and percentage elemental composition, SEM and EDX analyses were employed. The bioactivities of the synthesized nanocomposites were briefly investigated. The antifungal activity of (Ag)1-x(GNPs)x nanocomposites was reported to be 25% for AgNPs and 66.25% using 50% GNPs-Ag against Alternaria alternata. The synthesized nanocomposites were further evaluated for cytotoxic potential against U87 cancer cell lines with improved results (for pure AgNPs IC50: ~150 µg/mL, for 50% GNPs-Ag IC50: ~12.5 µg/mL). The photocatalytic properties of the nanocomposites were determined against the toxic dye Congo red, and the percentage degradation was recorded as 38.35% for AgNPs and 98.7% for 50% GNPs-Ag. Hence, from the results, it is concluded that silver nanoparticles with carbon derivatives (graphene) have strong anticancer and antifungal properties. Dye degradation strongly confirmed the photocatalytic potential of Ag-graphene nanocomposites in the removal of toxicity present in organic water pollutants.


Assuntos
Antineoplásicos , Grafite , Nanopartículas Metálicas , Nanocompostos , Grafite/farmacologia , Grafite/química , Antifúngicos/farmacologia , Nanopartículas Metálicas/química , Prata/farmacologia , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antineoplásicos/farmacologia , Nanocompostos/química , Antibacterianos , Difração de Raios X
2.
Molecules ; 27(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36014424

RESUMO

Microbial pathogens and bulk amounts of industrial toxic wastes in water are an alarming situation to humans and a continuous threat to aquatic life. In this study, multifunctional silver and graphene nanocomposites (Ag)1-x(GNPs)x [25% (x = 0.25), 50% (x = 0.50) and 75% (x = 0.75) of GNPs] were synthesized via ex situ approach. Further, the synthesized nanocomposites were explored for their physicochemical characteristics, such as vibrational modes (Raman spectroscopic analysis), optical properties (UV visible spectroscopic analysis), antibacterial and photocatalytic applications. We investigated the antimicrobial activity of silver and graphene nanocomposites (Ag-GNPs), and the results showed that Ag-GNPs nanocomposites exhibit remarkably improved antimicrobial activity (28.78% (E. coli), 31.34% (S. aureus) and 30.31% (P. aeruginosa) growth inhibition, which might be due to increase in surface area of silver nanoparticles (AgNPs)). Furthermore, we investigated the photocatalytic activity of silver (AgNPs) and graphene (GNPs) nanocomposites in varying ratios. Interestingly, the Ag-GNPs nanocomposites show improved photocatalytic activity (78.55% degradation) as compared to AgNPs (54.35%), which can be an effective candidate for removing the toxicity of dyes. Hence, it is emphatically concluded that Ag-GNPs hold very active behavior towards the decolorization of dyes and could be a potential candidate for the treatment of wastewater and possible pathogenic control over microbes. In the future, we also recommend different other in vitro biological and environmental applications of silver and graphene nanocomposites.


Assuntos
Anti-Infecciosos , Grafite , Nanopartículas Metálicas , Nanocompostos , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Corantes/química , Escherichia coli , Grafite/química , Humanos , Nanopartículas Metálicas/química , Nanocompostos/química , Pseudomonas aeruginosa , Prata/química , Prata/farmacologia , Staphylococcus aureus
3.
Protein Pept Lett ; 25(7): 626-632, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29921196

RESUMO

BACKGROUND: Cancer is considered one of the most predominant causes of morbidity and mortality all over the world and colorectal cancer is the most common fatal cancers, triggering the second cancer related death. Despite progress in understanding carcinogenesis and development in chemotherapeutics, there is an essential need to search for improved treatment. More than the half a century, cytotoxic and cytostatic agents have been examined as a potential treatment of cancer, among these agents; remarkable progresses have been reported by the use of the snake venom. Snake venoms are secreting materials of lethal snakes are store in venomous glands. Venoms are composite combinations of various protein, peptides, enzymes, toxins and non proteinaceous secretions. CONCLUSION: Snake venom possesses immense valuable mixtures of proteins and enzymes. Venoms have potential to combat with the cancerous cells and produce positive effect. Besides the toxicological effects of venoms, several proteins of snake venom e.g. disintegrins, phospholipases A2, metalloproteinases, and L-amino acid oxidases and peptides e.g. bradykinin potentiators, natriuretic, and analgesic peptides have shown potential as pharmaceutical agents, including areas of diagnosis and cancer treatment. In this review we have discussed recent remarkable research that has involved the dynamic snake venoms compounds, having anticancer bustle especially in case of colorectal cancer.


Assuntos
Antineoplásicos , Neoplasias Colorretais/tratamento farmacológico , Citostáticos , Venenos de Serpentes , Animais , Humanos , Serpentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...