Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Microorganisms ; 11(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37110270

RESUMO

Synthetic insecticides frequently cause pest resistance and destroy non-target organisms. Thus, virus formulation is an issue that deserves considerable attention in developing virus-based insecticides. The hindrance of using nucleopolyhedrovirus alone as a virus-based insecticide is due to slow lethal time, though its mortality remains high (100%). This paper reports the formulation of zeolite nanoparticles as a delivery system to accelerate lethal time in controlling Spodoptera litura (Fabr.). Zeolite nanoparticles were prepared using the beads-milling method. The statistical analysis was carried out by a description exploration method with six replications. The occlusion bodies' concentration in the virus formulation was 4 × 107 OBs in 1 mL medium. Zeolite nanoparticles formulation sped up the lethal time significantly (7.67 days) compared to micro-size zeolite (12.70 days) and only nucleopolyhedrovirus (8.12 days) and received acceptable mortality (86.4%). The zeolite nanoparticles delivery system provides an alternative formulation for nucleopolyhedrovirus with a significantly improved speed of killing the virus while maintaining suitable efficacy of the virus preparation in terms of the prevalence of mortality.

2.
Nanomaterials (Basel) ; 12(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35214959

RESUMO

The productivity of vegetable crops is constrained by insect pests. The search for alternative insect pest control is becoming increasingly important and is including the use of plant-derived pesticides. Plant-derived pesticides are reported as effective in controlling various insect pests through natural mechanisms, with biodegradable organic materials, diverse bioactivity, and low toxicity to non-target organisms. An antifeedant approach for insect control in crop management has been comprehensively studied by many researchers, though it has only been restricted to plant-based compounds and to the laboratory level at least. Nano-delivery formulations of biopesticides offer a wide variety of benefits, including increased effectiveness and efficiency (well-dispersion, wettability, and target delivery) with the improved properties of the antifeedant. This review paper evaluates the role of the nano-delivery system in antifeedant obtained from various plant extracts. The evaluation includes the research progress of antifeedant-based nano-delivery systems and the bioactivity performances of different types of nano-carrier formulations against various insect pests. An antifeedant nano-delivery system can increase their bioactivities, such as increasing sublethal bioactivity or reducing toxicity levels in both crude extracts/essential oils (EOs) and pure compounds. However, the plant-based antifeedant requires nanotechnological development to improve the nano-delivery systems regarding properties related to the bioactive functionality and the target site of insect pests. It is highlighted that the formulation of plant extracts creates a forthcoming insight for a field-scale application of this nano-delivery antifeedant due to the possible economic production process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...