Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38839686

RESUMO

Surface plasmon resonance (SPR) proves to be one of the most effective methods of label-free detection and has been integral for the study of biomolecular interactions and the development of biosensors. This trend delves into the latest SPR research and progress built upon the Kretschmann configuration, a pivotal platform, and highlights three key developments that have enhanced the capabilities of the technique. We will first cover a range of explorations of novel plasmonic materials that have shaped SPR performance. Innovative signal transduction and collection, which leverages traditional materials and emerging alternatives, will then be discussed. Finally, the evolving landscape of data analysis, including the integration of machine learning algorithms to navigate complex SPR datasets, will be reviewed. We will also discuss the implementation of these improvements that have enabled new biosensing functions. These advancements not only pave the way for enhanced biosensing in general but also open new avenues for the technique to play a more significant role in research concerning human health.

2.
ACS Appl Mater Interfaces ; 16(1): 84-94, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38128131

RESUMO

A majority of biomimetic membranes used for current biophysical studies rely on planar structures such as supported lipid bilayer (SLB) and self-assembled monolayers (SAMs). While they have facilitated key information collection, the lack of curvature makes these models less effective for the investigation of curvature-dependent protein binding. Here, we report the development and characterization of curved membrane mimics on a solid substrate with tunable curvature and ease in incorporation of cellular membrane components for the study of protein-membrane interactions. The curved membranes were generated with an underlayer lipid membrane composed of DGS-Ni-NTA and POPC lipids on the substrate, followed by the attachment of histidine-tagged cholera toxin (his-CT) as a capture layer. Lipid vesicles containing different compositions of gangliosides, including GA1, GM1, GT1b, and GQ1b, were anchored to the capture layer, providing fixation of the curved membranes with intact structures. Characterization of the curved membrane was accomplished with surface plasmon resonance (SPR), fluorescence recovery after photobleaching (FRAP), and nano-tracking analysis (NTA). Further optimization of the interface was achieved through principal component analysis (PCA) to understand the effect of ganglioside type, percentage, and vesicle dimensions on their interactions with proteins. In addition, Monte Carlo simulations were employed to predict the distribution of the gangliosides and interaction patterns with single point and multipoint binding models. This work provides a reliable approach to generate robust, component-tuning, and curved membranes for investigating protein interactions more pertinently than what a traditional planar membrane offers.


Assuntos
Bicamadas Lipídicas , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Bicamadas Lipídicas/química , Membrana Celular/metabolismo , Proteínas , Gangliosídeos/química
3.
Chem Commun (Camb) ; 59(53): 8294-8297, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37318544

RESUMO

Herein, a "two-in-one" Ag@Au core-shell nanozyme probe inducing double-signal amplification has been developed to significantly elevate the sensitivity of SPR sensors via sandwich immunoassay. The Ag@Au core-shell nanozyme with intrinsic peroxide-like activity was demonstrated to catalyze a polymerization reaction leading to formation of polyaniline, allowing further improvement of detection performance of SPR immunosensor. The method demonstrated here offers a universal strategy for enhanced SPR detection and further expands the application of nanozymes.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ressonância de Plasmônio de Superfície/métodos , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Catálise , Peróxidos , Ouro
4.
ACS Appl Bio Mater ; 6(1): 182-190, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36550079

RESUMO

SARS-CoV-2 has been shown to enter and infect human cells via interactions between spike protein (S glycoprotein) and angiotensin-converting enzyme 2 (ACE2). As such, it may be possible to suppress the infection of the virus via the blocking of this binding interaction through the use of specific peptides that can mimic the human ACE 2 peptidase domain (PD) α 1-helix. Herein, we report the use of competitive assays along with surface plasmon resonance (SPR) to investigate the effect of peptide sequence and length on spike protein inhibition. The characterization of these binding interactions helps us understand the mechanisms behind peptide-based viral blockage and develop SPR methodologies to quickly screen disease inhibitors. This work not only helps further our understanding of the important biological interactions involved in viral inhibition but will also aid in future studies that focus on the development of therapeutics and drug options. Two peptides of different sequence lengths, [30-42] and [22-44], based on the α 1-helix of ACE2 PD were selected for this fundamental investigation. In addition to characterizing their inhibitory behavior, we also identified the critical amino acid residues of the RBD/ACE2-derived peptides by combining experimental results and molecular docking modeling. While both investigated peptides were found to effectively block the RBD residues known to bind to ACE2 PD, our investigation showed that the shorter peptide was able to reach a maximal inhibition at lower concentrations. These inhibition results matched with molecular docking models and indicated that peptide length and composition are key in the development of an effective peptide for inhibiting biophysical interactions. The work presented here emphasizes the importance of inhibition screening and modeling, as longer peptides are not always more effective.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Ressonância de Plasmônio de Superfície , Enzima de Conversão de Angiotensina 2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Simulação de Acoplamento Molecular , Peptídeos/farmacologia
5.
ACS Sens ; 5(11): 3617-3626, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33115236

RESUMO

Multiple sclerosis (MS) is an autoimmune disease that damages the myelin sheaths of nerve cells in the central nervous system. An individual suffering from MS produces increased levels of antibodies that target cell membrane components, such as phospholipids, gangliosides, and membrane proteins. Among them, anti-ganglioside antibodies are considered as important biomarkers to differentiate MS from other diseases that exhibit similar symptoms. We report here a label-free method for detecting a series of antibodies against gangliosides in serum by surface plasmon resonance imaging (SPRi) in combination with a carbohydrate microarray. The ganglioside array was fabricated with a plasmonically tuned, background-free biochip, and coated with a perfluorodecyltrichlorosilane (PFDTS) layer for antigen attachment as a self-assembled pseudo-myelin sheath. The chip was characterized with AFM and matrix-assisted laser desorption ionization mass spectrometry, demonstrating effective functionalization of the surface. SPRi measurements of patients' mimicking blood samples were conducted. A multiplexed detection of antibodies for anti-GT1b, anti-GM1, and anti-GA1 in serum was demonstrated, with a working range of 1 to 100 ng/mL, suggesting that it is well suited for clinical assessment of antibody abnormality in MS patients. Statistical analyses, including PLS-DA and PCA show the array allows comprehensive characterization of cross reactivity patterns between the MS specific antibodies and can generate a wide range of information compared to traditional end point assays. This work uses PFDTS surface functionalization and enables direct MS biomarker detection in serum, offering a powerful alternative for MS assessment and potentially improved patient care.


Assuntos
Esclerose Múltipla , Ressonância de Plasmônio de Superfície , Biomarcadores , Gangliosídeos , Humanos , Esclerose Múltipla/diagnóstico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
Anal Chem ; 92(13): 8654-8659, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32525300

RESUMO

Aluminum has recently attracted considerable interest as a plasmonic material due to its unique optical properties, but most work has been limited to nanostructures. We report here SPR biosensing with aluminum thin-films using the standard Kretschmann configuration that has previously been dominated by gold films. Electron-beam physical vapor deposition (EBPVD)-prepared Al films oxidize in air to form a nanofilm of Al2O3, yielding robust stability for sensing applications in buffered solutions. FDTD simulations revealed a sharp plasmonic dip in the visible range that enables measurement of both angular shift and reflection intensity change at a fixed angle. Bulk and surface tests indicated that Al films exhibited superb sensitivity performance in both categories. Compared to Au, the Al/Al2O3 layer showed a marked effect of suppressing nonspecific binding from proteins in human serum. Further characterization indicated that Al film demonstrated a higher sensitivity and a wider working range than Au films when used for SPR imaging analysis. Combined with its economic and manufacturing benefits, the Al thin-film has the potential to become a highly advantageous plasmonic substrate to meet a wide range of biosensing needs in SPR configurations.


Assuntos
Alumínio/química , Técnicas Biossensoriais/métodos , Óxido de Alumínio/química , Animais , Biotina/química , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Bovinos , Ouro/química , Humanos , Nanoestruturas/química , Refratometria , Soroalbumina Bovina/química , Estreptavidina/análise , Ressonância de Plasmônio de Superfície/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...