Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 10454, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729249

RESUMO

An in vitro Hohenheim gas test was conducted to analyze the fermentation end-products from 17 cultivars of eight polyphenol containing forage species. The polyphenol composition and proanthocyanidin (PA) structural features of all the cultivars were analyzed with UPLC-MS/MS in leaves of vegetative or generative plants. The samples were incubated with and without polyethylene glycol (PEG, a tannin-binding agent) to separate the tannin-effect on methane (CH4, ml/200 mg DM) production from that of forage quality. Sulla and big trefoil, two particularly PA rich species, were found to have the highest CH4 reduction potential of up to 47% when compared to the samples without PEG. However, concomitant reduction in gas production (GP, ml/200 mg DM) of up to 44% was also observed. An increase in both GP and CH4 production under PEG treatments, confirms the role of tannins in CH4 reduction. Moreover, PA structural features and concentration were found to be an important source of variation for CH4 production from PA containing species. Despite having low polyphenol concentrations, chicory and plantain were found to reduce CH4 production without reducing GP. Additionally, interspecies variability was found to be higher than intraspecies variability, and these results were consistent across growth stages, indicating the findings' representativeness.


Assuntos
Metano , Rúmen , Animais , Cromatografia Líquida , Dieta , Fermentação , Metano/metabolismo , Polifenóis/metabolismo , Rúmen/metabolismo , Espectrometria de Massas em Tandem , Taninos/metabolismo
2.
Animals (Basel) ; 11(4)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33920009

RESUMO

Methane emissions from ruminants are a major contributor to agricultural greenhouse gas emissions. Thus, eight different forage species were combined in binary mixtures with Lolium perenne in increasing proportions, in vitro, to determine their methane reduction potential in ruminants. Species were sampled in two consecutive years where possible. The aims were: a) to determine if mixtures with specific forages, particularly those rich in plant specialized metabolites (PSM), can reduce methane emissions compared to ryegrass monocultures, b) to identify whether there is a linear-dose effect relationship in methane emissions from the legume or herb addition, and c) whether these effects are maintained across sampling years. Results showed that all dicot species studied, including the non-tannin-containing species, reduced methane production. The tannin-rich species, Sanguisorba minor and Lotus pedunculatus, showed the greatest methane reduction potential of up to 33%. Due to concomitant reductions in the forage digestibility, Cichorium intybus yielded the lowest methane emissions per digestible forage unit. Contrary to total gas production, methane production was less predictable, with a tendency for the lowest methane production being obtained with a 67.5% share of the legume or herb partner species. Thus, linear increments in the partner species share did not result in linear changes in methane concentration. The methane reduction potential differed across sampling years, but the species ranking in methane concentration was stable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...