Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 112(1): 83-90, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372226

RESUMO

Titanium is the metal of choice for dental implants because of its biocompatibility and ability to merge with human bone tissue. Despite the great success rate of dental implants, early and late complications occur. Coating titanium dental implant surfaces with polyethyleneimine (PEI)-plasmid DNA (pDNA) polyplexes improve osseointegration by generating therapeutic protein expression at the implantation site. Lyophilization is an approach for stabilizing polyplexes and extending their shelf life; however, most lyoprotectants are sugars that can aid bacterial growth in the peri-implant environment. In our research, we coated titanium surfaces with polyplex solutions containing varying amounts of lyoprotectants. We used two common lyoprotectants (sucrose and polyvinylpyrrolidone K30) and showed for the first time that sucralose (a sucrose derivative used as an artificial sweetener) might act as a lyoprotectant for polyplex solutions. Human embryonic kidney (HEK) 293T cells were used to quantify the transfection efficiency and cytotoxicity of the polyplex/lyoprotectant formulations coating titanium surfaces. Polyplexes that were lyophilized in the presence of a lyoprotectant displayed both preserved particle size and high transfection efficiencies. Polyplexes lyophilized in 2% sucralose have maintained transfection efficacy for three years. These findings suggest that modifying dental implants with lyophilized polyplexes might improve their success rate in the clinic.


Assuntos
Implantes Dentários , Humanos , Titânio , Transfecção , Técnicas de Transferência de Genes , Polietilenoimina , Plasmídeos , Sacarose
2.
Adv Pharmacol Pharm Sci ; 2022: 5916013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36317015

RESUMO

Solid dispersions have achieved significant interest as an effective means of enhancing the dissolution rate and thus the bioavailability of a range of weakly water-soluble drugs. Solid dispersions of weakly water-soluble drugs with water-soluble carriers have lowered the frequency of these problems and improved dissolution. Solid dispersion is a solubilization technology emphasizing mainly on, drug-polymer two-component systems in which drug dispersion and its stabilization is the key to formulation development. Therefore, this technology is recognized as an exceptionally useful means of improving the dissolution properties of poorly water-soluble drugs and in the latest years, a big deal of understanding has been accumulated about solid dispersion, however, their commercial application is limited. In this review article, emphasis is placed on solubility, BCS classification, and carriers. Moreover, this article presents the diverse preparation techniques for solid dispersion and gathers some of the recent technological transfers. The different types of solid dispersions based on the carrier used and molecular arrangement were underlined. Additionally, it summarizes the mechanisms, the methods of preparing solid dispersions, and the marketed drugs that are available using solid dispersion approaches.

3.
Front Pharmacol ; 13: 835727, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308236

RESUMO

The practice of medicine has steadily employed less invasive methods to obtain information derived from the tumor to guide clinical management of patients. Liquid biopsy-the sampling of blood-is a non-invasive method for generating information previously only available from tissue biopsies of the tumor mass. Analysis of fragmented circulating tumor DNA in the plasma is clinically used to identify actionable mutations and detect residual or recurrent disease. Plasma analysis cannot, however, assess cancer phenotypes, including the expression of drug targets and protein biomarkers. Circulating tumor cells (CTCs) are intact cancer cells that have entered the blood that have the potential for distant metastasis. While enumeration of CTCs is prognostic of outcome, recently developed technology allows for the interrogation of protein biomarkers on CTCs that could be predictive of response. Furthermore, since CTCs contain intact whole cancer genomes, isolating viable CTCs detected during therapy could provide a rational approach to assessing mutational profiles of resistance. Identification, characterization and molecular analysis of CTCs together will advance the capacity of liquid biopsy to meet the requirements of twenty-first century medicine.

4.
Sens Biosensing Res ; 36: 100487, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35340912

RESUMO

The COVID-19 pandemic has caused tremendous damage to the world. In order to quickly and accurately diagnose the virus and contain the spread, there is a need for rapid, sensitive, accurate, and cost-effective SARS-CoV-2 biosensors. In this paper, we report on a novel biosensor based on angiotensin converting enzyme 2 (ACE-2)-conjugated vertically-oriented silicon nanowire (vSiNW) arrays that can detect the SARS-CoV-2 spike protein with high sensitivity and selectivity relative to negative controls. First, we demonstrate the efficacy of using ACE-2 receptor to detect the SARS-CoV-2 spike protein via a capture assay test, which confirms high specificity of ACE-2 against the mock protein, and high affinity between the spike and ACE-2. We then report on results for ACE-2-conjugated vSiNW arrays where the biosensor device architecture is based on a p-n junction transducer. We confirm via analytical modeling that the transduction mechanism of the biosensor involves induced surface charge depletion of the vSiNWs due to negative electrostatic surface potential induced by the spike protein after binding with ACE-2. This vSiNW surface charge modulation is measured via current-voltage characteristics of the functionalized biosensor. Calibrated concentration dependent electrical response of the vSiNW sensor confirms the limit-of-detection for virus spike concentration of 100 ng/ml (or 575 pM). The vSiNW sensor also exhibits highly specific response to the spike protein with respect to negative controls, offering a promising point-of-care detection method for SARS-CoV-2.

5.
Eur J Pharm Biopharm ; 161: 15-28, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33549706

RESUMO

Tissue engineering is an interdisciplinary field that aims to combine life sciences and engineering to create therapies that regenerate functional tissue. Early work in tissue engineering mostly used materials as inert scaffolding structures, but research has shown that constructing scaffolds from biologically active materials can help with regeneration by enabling cell-scaffold interactions or release of factors that aid in regeneration. Three-dimensional (3D) printing is a promising technique for the fabrication of structurally intricate and compositionally complex tissue engineering scaffolds. Such scaffolds can be functionalized with techniques developed by nanotechnology research to further enhance their ability to stimulate regeneration and interact with cells. Nanotechnological components, nanoscale textures, and microscale/nanoscale printing can all be incorporated into the manufacture of 3D printed scaffolds. This review discusses recent advancements in the merging of nanotechnology with 3D printed tissue engineering scaffolds, with a focus on applications of nanoscale components, nanoscale texture, and innovative printing techniques and the effects observed in vitro and in vivo.


Assuntos
Nanotecnologia/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Humanos , Impressão Tridimensional , Regeneração/fisiologia
6.
J Tissue Eng Regen Med ; 14(4): 622-632, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32078257

RESUMO

Dental implants are very successful medical devices, yet implant failures do occur due to biological and mechanical complications. Peri-implantitis is one such biological complication that is primarily caused by bacteria and their products at the implant soft tissue interface. Bacterial infiltration can be prevented by the formation of a reliable soft tissue seal encircling dental implants. Platelet-derived growth factor-BB (PDGF-BB) has significant chemotactic and proliferative effects on various mesenchymal cell types, including fibroblasts, and therefore can be an effective molecule to enhance the peri-implant soft tissue seal. To overcome the limitations of the recombinant protein form of PDGF-BB, such as cost and the need for supraphysiological doses, we have developed and characterized a titanium surface that is rendered bioactive by coating it with polyethylenimine-plasmid DNA (pDNA) nanoplexes in the presence of sucrose. Human embryonic kidney 293T (HEK293T) cells and human primary gingival fibroblasts (GFs) were successfully transfected in culture with enhanced green fluorescent protein (EGFP)-encoding pDNA or platelet-derived growth factor subunit B (PDGFB)-encoding pDNA loaded into nanoplexes and coated onto titanium disks in a dose-dependent manner. GFs were shown to secrete PDGF-BB for at least 7 days after transfection and displayed both minimal viability loss and increased integrin-α2 expression 4 days posttransfection.


Assuntos
Becaplermina , Materiais Revestidos Biocompatíveis/química , Fibroblastos/metabolismo , Gengiva/metabolismo , Titânio/química , Transgenes , Becaplermina/biossíntese , Becaplermina/genética , Adesão Celular , Células HEK293 , Humanos , Estudo de Prova de Conceito , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...