Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(1)2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38290768

RESUMO

INTRODUCTION: Triple-negative breast cancer (TNBC) prognosis is poor. Immunotherapies to enhance the antibody-induced natural killer (NK) cell antitumor activity are emerging for TNBC that is frequently immunogenic. The aspartic protease cathepsin D (cath-D), a tumor cell-associated extracellular protein with protumor activity and a poor prognosis marker in TNBC, is a prime target for antibody-based therapy to induce NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC). This study investigated whether Fc-engineered anti-cath-D antibodies trigger ADCC, their impact on antitumor efficacy and tumor-infiltrating NK cells, and their relevance for combinatory therapy in TNBC. METHODS: Cath-D expression and localization in TNBC samples were evaluated by western blotting, immunofluorescence, and immunohistochemistry. The binding of human anti-cath-D F1M1 and Fc-engineered antibody variants, which enhance (F1M1-Fc+) or prevent (F1M1-Fc-) affinity for CD16a, to secreted human and murine cath-D was analyzed by ELISA, and to CD16a by surface plasmon resonance and flow cytometry. NK cell activation was investigated by flow cytometry, and ADCC by lactate dehydrogenase release. The antitumor efficacy of F1M1 Fc-variants was investigated using TNBC cell xenografts in nude mice. NK cell recruitment, activation, and cytotoxic activity were analyzed in MDA-MB-231 cell xenografts by immunophenotyping and RT-qPCR. NK cells were depleted using an anti-asialo GM1 antibody. F1M1-Fc+ antitumor effect was assessed in TNBC patient-derived xenografts (PDXs) and TNBC SUM159 cell xenografts, and in combination with paclitaxel or enzalutamide. RESULTS: Cath-D expression on the TNBC cell surface could be exploited to induce ADCC. F1M1 Fc-variants recognized human and mouse cath-D. F1M1-Fc+ activated NK cells in vitro and induced ADCC against TNBC cells and cancer-associated fibroblasts more efficiently than F1M1. F1M1-Fc- was ineffective. In the MDA-MB-231 cell xenograft model, F1M1-Fc+ displayed higher antitumor activity than F1M1, whereas F1M1-Fc- was less effective, reflecting the importance of Fc-dependent mechanisms in vivo. F1M1-Fc+ triggered tumor-infiltrating NK cell recruitment, activation and cytotoxic activity in MDA-MB-231 cell xenografts. NK cell depletion impaired F1M1-Fc+ antitumor activity, demonstrating their key role. F1M1-Fc+ inhibited growth of SUM159 cell xenografts and two TNBC PDXs. In combination therapy, F1M1-Fc+ improved paclitaxel and enzalutamide therapeutic efficacy without toxicity. CONCLUSIONS: F1M1-Fc+ is a promising immunotherapy for TNBC that could be combined with conventional regimens, including chemotherapy or antiandrogens.


Assuntos
Antineoplásicos , Benzamidas , Nitrilas , Feniltioidantoína , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/patologia , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Catepsina D , Camundongos Nus , Linhagem Celular Tumoral , Citotoxicidade Celular Dependente de Anticorpos , Antineoplásicos/uso terapêutico , Células Matadoras Naturais , Fragmentos Fc das Imunoglobulinas
2.
Br J Pharmacol ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030588

RESUMO

BACKGROUND AND PURPOSE: Triple-negative breast cancer (TNBC) has poorer outcomes than other breast cancers (BC), including HER2+ BC. Cathepsin D (CathD) is a poor prognosis marker overproduced by BC cells, hypersecreted in the tumour microenvironment with tumour-promoting activity. Here, we characterized the immunomodulatory activity of the anti-CathD antibody F1 and its improved Fab-aglycosylated version (F1M1) in immunocompetent mouse models of TNBC (C57BL/6 mice harbouring E0771 cell grafts) and HER2-amplified BC (BALB/c mice harbouring TUBO cell grafts). EXPERIMENTAL APPROACH: CathD expression was evaluated by western blotting and immunofluorescence, and antibody binding to CathD by ELISA. Antibody anti-tumour efficacy was investigated in mouse models. Immune cell recruitment and activation were assessed by immunohistochemistry, immunophenotyping, and RT-qPCR. KEY RESULTS: F1 and F1M1 antibodies remodelled the tumour immune landscape. Both antibodies promoted innate antitumour immunity by preventing the recruitment of immunosuppressive M2-polarized tumour-associated macrophages (TAMs) and by activating natural killer cells in the tumour microenvironment of both models. This translated into a reduction of T-cell exhaustion markers in the tumour microenvironment that could be locally supported by enhanced activation of anti-tumour antigen-presenting cell (M1-polarized TAMs and cDC1 cells) functions. Both antibodies inhibited tumour growth in the highly-immunogenic E0771 model, but only marginally in the immune-excluded TUBO model, indicating that anti-CathD immunotherapy is more relevant for BC with a high immune cell infiltrate, as often observed in TNBC. CONCLUSION AND IMPLICATION: Anti-CathD antibody-based therapy triggers the anti-tumour innate and adaptive immunity in preclinical models of BC and is a promising immunotherapy for immunogenic TNBC.

3.
EMBO Rep ; 24(4): e55069, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36744297

RESUMO

Melanoma is a highly aggressive cancer endowed with a unique capacity of rapidly metastasizing, which is fundamentally driven by aberrant cell motility behaviors. Discovering "migrastatics" targets, specifically controlling invasion and dissemination of melanoma cells during metastasis, is therefore of primary importance. Here, we uncover the prominent expression of the plasma membrane TRPV2 calcium channel as a distinctive feature of melanoma tumors, directly related to melanoma metastatic dissemination. In vitro as well as in vivo, TRPV2 activity is sufficient to confer both migratory and invasive potentials, while conversely TRPV2 silencing in highly metastatic melanoma cells prevents aggressive behavior. In invasive melanoma cells, TRPV2 channel localizes at the leading edge, in dynamic nascent adhesions, and regulates calcium-mediated activation of calpain and the ensuing cleavage of the adhesive protein talin, along with F-actin organization. In human melanoma tissues, TRPV2 overexpression correlates with advanced malignancy and poor prognosis, evoking a biomarker potential. Hence, by regulating adhesion and motility, the mechanosensitive TRPV2 channel controls melanoma cell invasiveness, highlighting a new therapeutic option for migrastatics in the treatment of metastatic melanoma.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Melanoma/genética , Membrana Celular/metabolismo , Neoplasias Cutâneas/genética , Canais de Cátion TRPV/genética , Movimento Celular/genética , Invasividade Neoplásica/patologia , Cálcio/metabolismo
4.
Int J Cancer ; 152(6): 1243-1258, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36346290

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and lacks specific targeted therapeutic agents. The current mechanistic evidence from cell-based studies suggests that the matricellular protein SPARC has a tumor-promoting role in TNBC; however, data on the clinical relevance of SPARC expression/secretion by tumor and stromal cells in TNBC are limited. Here, we analyzed by immunohistochemistry the prognostic value of tumor and stromal cell SPARC expression in 148 patients with non-metastatic TNBC and long follow-up (median: 5.4 years). We also quantified PD-L1 and PD-1 expression. We detected SPARC expression in tumor cells (42.4%), cancer-associated fibroblasts (CAFs; 88.1%), tumor-associated macrophages (77.1%), endothelial cells (75.2%) and tumor-infiltrating lymphocytes (9.8%). Recurrence-free survival was significantly lower in patients with SPARC-expressing CAFs. Multivariate analysis showed that SPARC expression in CAFs was an independent prognostic factor. We also detected tumor and stromal cell SPARC expression in TNBC cytosols, and in patient-derived xenografts and cell lines. Furthermore, we analyzed publicly available single-cell mRNA sequencing data and found that in TNBC, SPARC is expressed by different CAF subpopulations, including myofibroblasts and inflammatory fibroblasts that are involved in tumor-related processes. We then showed that fibroblast-secreted SPARC had a tumor-promoting role by inhibiting TNBC cell adhesion and stimulating their motility and invasiveness. Overall, our study demonstrates that SPARC expression in CAFs is an independent prognostic marker of poor outcome in TNBC. Patients with SPARC-expressing CAFs could be eligible for anti-SPARC targeted therapy.


Assuntos
Antineoplásicos , Fibroblastos Associados a Câncer , Neoplasias de Mama Triplo Negativas , Humanos , Prognóstico , Neoplasias de Mama Triplo Negativas/patologia , Fibroblastos Associados a Câncer/metabolismo , Células Endoteliais/metabolismo , Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Osteonectina/genética , Osteonectina/metabolismo
5.
Cancer Res ; 82(9): 1774-1788, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35502542

RESUMO

Fibroblastic reticular cells (FRC) are immunologically specialized myofibroblasts that control the elasticity of the lymph node, in part through their contractile properties. Swelling of tumor-draining lymph nodes is a hallmark of lymphophilic cancers such as cutaneous melanoma. Melanoma displays high intratumoral heterogeneity with the coexistence of melanoma cells with variable differentiation phenotypes from melanocytic to dedifferentiated states. Factors secreted by melanoma cells promote premetastatic lymph node reprograming and tumor spreading. Elucidating the impact of the melanoma secretome on FRC could help identify approaches to prevent metastasis. Here we show that melanocytic and dedifferentiated melanoma cells differentially impact the FRC contractile phenotype. Factors secreted by dedifferentiated cells, but not by melanocytic cells, strongly inhibited actomyosin-dependent contractile forces of FRC by decreasing the activity of the RHOA-RHO-kinase (ROCK) pathway and the mechano-responsive transcriptional coactivator Yes1 associated transcriptional regulator (YAP). Transcriptional profiling and biochemical analyses indicated that actomyosin cytoskeleton relaxation in FRC is driven by inhibition of the JAK1-STAT3 pathway. This FRC relaxation was associated with increased FRC proliferation and activation and with elevated tumor invasion in vitro. The secretome of dedifferentiated melanoma cells also modulated the biomechanical properties of distant lymph node in premetastatic mouse models. Finally, IL1 produced by dedifferentiated cells was involved in the inhibition of FRC contractility. These data highlight the role of the JAK1-STAT3 and YAP pathways in spontaneous contractility of resting FRC. They also suggest that dedifferentiated melanoma cells specifically target FRC biomechanical properties to favor tumor spreading in the premetastatic lymph node niche. Targeting this remote communication could be an effective strategy to prevent metastatic spread of the disease. SIGNIFICANCE: Communication between dedifferentiated melanoma cells and lymph node fibroblasts reprograms the biomechanical properties of the premetastatic lymph node niche to promote tumor invasion. See related commentary by Lund, p. 1692.


Assuntos
Melanoma , Neoplasias Cutâneas , Actomiosina/metabolismo , Animais , Fibroblastos/metabolismo , Humanos , Interleucina-1 , Janus Quinase 1/metabolismo , Linfonodos/patologia , Melanoma/patologia , Camundongos , Fator de Transcrição STAT3/metabolismo , Neoplasias Cutâneas/patologia
6.
EMBO Mol Med ; 14(2): e11814, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34957688

RESUMO

Resistance to BRAF/MEK inhibitor therapy in BRAFV600 -mutated advanced melanoma remains a major obstacle that limits patient benefit. Microenvironment components including the extracellular matrix (ECM) can support tumor cell adaptation and tolerance to targeted therapy; however, the underlying mechanisms remain poorly understood. Here, we investigated the process of matrix-mediated drug resistance (MMDR) in response to BRAFV600 pathway inhibition in melanoma. We demonstrate that physical and structural cues from fibroblast-derived ECM abrogate anti-proliferative responses to BRAF/MEK inhibition. MMDR is mediated by drug-induced linear clustering of phosphorylated DDR1 and DDR2, two tyrosine kinase collagen receptors. Depletion and pharmacological targeting of DDR1 and DDR2 overcome ECM-mediated resistance to BRAF-targeted therapy. In xenografts, targeting DDR with imatinib enhances BRAF inhibitor efficacy, counteracts drug-induced collagen remodeling, and delays tumor relapse. Mechanistically, DDR-dependent MMDR fosters a targetable pro-survival NIK/IKKα/NF-κB2 pathway. These findings reveal a novel role for a collagen-rich matrix and DDR in tumor cell adaptation and resistance. They also provide important insights into environment-mediated drug resistance and a preclinical rationale for targeting DDR signaling in combination with targeted therapy in melanoma.


Assuntos
Receptor com Domínio Discoidina 1 , Receptor com Domínio Discoidina 2 , Melanoma , Humanos , Melanoma/patologia , Recidiva Local de Neoplasia , Proteínas Proto-Oncogênicas B-raf , Receptores Mitogênicos/química , Microambiente Tumoral
7.
Theranostics ; 11(13): 6173-6192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995652

RESUMO

Rationale: Alternative therapeutic strategies based on tumor-specific molecular targets are urgently needed for triple-negative breast cancer (TNBC). The protease cathepsin D (cath-D) is a marker of poor prognosis in TNBC and a tumor-specific extracellular target for antibody-based therapy. The identification of cath-D substrates is crucial for the mechanistic understanding of its role in the TNBC microenvironment and future therapeutic developments. Methods: The cath-D substrate repertoire was investigated by N-Terminal Amine Isotopic Labeling of Substrates (TAILS)-based degradome analysis in a co-culture assay of TNBC cells and breast fibroblasts. Substrates were validated by amino-terminal oriented mass spectrometry of substrates (ATOMS). Cath-D and SPARC expression in TNBC was examined using an online transcriptomic survival analysis, tissue micro-arrays, TNBC cell lines, patient-derived xenografts (PDX), human TNBC samples, and mammary tumors from MMTV-PyMT Ctsd-/- knock-out mice. The biological role of SPARC and its fragments in TNBC were studied using immunohistochemistry and immunofluorescence analysis, gene expression knockdown, co-culture assays, western blot analysis, RT-quantitative PCR, adhesion assays, Transwell motility, trans-endothelial migration and invasion assays. Results: TAILS analysis showed that the matricellular protein SPARC is a substrate of extracellular cath-D. In vitro, cath-D induced limited proteolysis of SPARC C-terminal extracellular Ca2+ binding domain at acidic pH, leading to the production of SPARC fragments (34-, 27-, 16-, 9-, and 6-kDa). Similarly, cath-D secreted by TNBC cells cleaved fibroblast- and cancer cell-derived SPARC at the tumor pericellular acidic pH. SPARC cleavage also occurred in TNBC tumors. Among these fragments, only the 9-kDa SPARC fragment inhibited TNBC cell adhesion and spreading on fibronectin, and stimulated their migration, endothelial transmigration, and invasion. Conclusions: Our study establishes a novel crosstalk between proteases and matricellular proteins in the tumor microenvironment through limited SPARC proteolysis, revealing a novel targetable 9-kDa bioactive SPARC fragment for new TNBC treatments. Our study will pave the way for the development of strategies for targeting bioactive fragments from matricellular proteins in TNBC.


Assuntos
Catepsina D/metabolismo , Matriz Extracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Osteonectina/metabolismo , Fragmentos de Peptídeos/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral , Sequência de Aminoácidos , Animais , Sítios de Ligação , Catepsina D/deficiência , Catepsina D/genética , Adesão Celular , Feminino , Fibroblastos , Regulação Neoplásica da Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Neoplasias Mamárias Experimentais/enzimologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Peso Molecular , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Osteonectina/genética , Fragmentos de Peptídeos/metabolismo , Domínios Proteicos , Proteólise , Especificidade por Substrato , Migração Transendotelial e Transepitelial , Neoplasias de Mama Triplo Negativas/enzimologia
8.
Sci Rep ; 11(1): 4172, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33603056

RESUMO

Binding of tumour necrosis factor α (TNFα) to its receptor (TNFR1) is critical for both survival and death cellular pathways. TNFα/TNFR1 signalling is complex and tightly regulated at different levels to control cell fate decisions. Previously, we identified TNFR1-d2, an exon 2-spliced transcript of TNFRSF1A gene encoding TNFR1, whose splicing may be modulated by polymorphisms associated with inflammatory disorders. Here, we investigated the impact of TNFRSF1A variants involved in TNFR-associated periodic syndrome (TRAPS) on TNFR1-d2 protein expression and activity. We found that TNFR1-d2 could be translated by using an internal translation initiation codon and a de novo internal ribosome entry site (IRES), which resulted in a putative TNFR1 isoform lacking its N-terminal region. The kinetic of assembly of TNFR1-d2 clusters at the cell surface was reduced as compared with full-length TNFR1. Although co-localized with the full-length TNFR1, TNFR1-d2 neither activated nuclear factor (NF)-κB signalling, nor interfered with TNFR1-induced NF-κB activation. Translation of TNFR1-d2 carrying the severe p.(Thr79Met) pathogenic variant (also known as T50M) was initiated at the mutated codon, resulting in an elongated extracellular domain, increased speed to form preassembled clusters in absence of TNFα, and constitutive NF-κB activation. Overall, TNFR1-d2 might reflect the complexity of the TNFR1 signalling pathways and could be involved in TRAPS pathophysiology of patients carrying the p.(Thr79Met) disease-causing variant.


Assuntos
Doenças Hereditárias Autoinflamatórias/genética , Doenças Hereditárias Autoinflamatórias/patologia , Mutação/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/genética , Linhagem Celular , Linhagem Celular Tumoral , Éxons/genética , Células HEK293 , Células HeLa , Humanos , NF-kappa B/genética
9.
Cancers (Basel) ; 12(5)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429078

RESUMO

BACKGROUND: In the triple-negative breast cancer (TNBC) group, the luminal androgen receptor subtype is characterized by expression of androgen receptor (AR) and lack of estrogen receptor and cytokeratin 5/6 expression. Cathepsin D (Cath-D) is overproduced and hypersecreted by breast cancer (BC) cells and is a poor prognostic marker. We recently showed that in TNBC, Cath-D is a potential target for antibody-based therapy. This study evaluated the frequency of AR/Cath-D co-expression and its prognostic value in a large series of patients with non-metastatic TNBC. METHODS: AR and Cath-D expression was evaluated by immunohistochemistry in 147 non-metastatic TNBC. The threshold for AR positivity (AR+) was set at ≥1% of stained cells, and the threshold for Cath-D positivity (Cath-D+) was moderate/strong staining intensity. Lymphocyte density, macrophage infiltration, PD-L1 and programmed cell death (PD-1) expression were assessed. RESULTS: Scarff-Bloom-Richardson grade 1-2 and lymph node invasion were more frequent, while macrophage infiltration was less frequent in AR+/Cath-D+ tumors (62.7%). In multivariate analyses, higher tumor size, no adjuvant chemotherapy and AR/Cath-D co-expression were independent prognostic factors of worse overall survival. CONCLUSIONS: AR/Cath-D co-expression independently predicted overall survival. Patients with TNBC in which AR and Cath-D are co-expressed could be eligible for combinatory therapy with androgen antagonists and anti-Cath-D human antibodies.

10.
Cancer Res ; 80(10): 1927-1941, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32179513

RESUMO

Aberrant extracellular matrix (ECM) deposition and stiffening is a physical hallmark of several solid cancers and is associated with therapy failure. BRAF-mutant melanomas treated with BRAF and MEK inhibitors almost invariably develop resistance that is frequently associated with transcriptional reprogramming and a de-differentiated cell state. Melanoma cells secrete their own ECM proteins, an event that is promoted by oncogenic BRAF inhibition. Yet, the contribution of cancer cell-derived ECM and tumor mechanics to drug adaptation and therapy resistance remains poorly understood. Here, we show that melanoma cells can adapt to targeted therapies through a mechanosignaling loop involving the autocrine remodeling of a drug-protective ECM. Analyses revealed that therapy-resistant cells associated with a mesenchymal dedifferentiated state displayed elevated responsiveness to collagen stiffening and force-mediated ECM remodeling through activation of actin-dependent mechanosensors Yes-associated protein (YAP) and myocardin-related transcription factor (MRTF). Short-term inhibition of MAPK pathway also induced mechanosignaling associated with deposition and remodeling of an aligned fibrillar matrix. This provided a favored ECM reorganization that promoted tolerance to BRAF inhibition in a YAP- and MRTF-dependent manner. Matrix remodeling and tumor stiffening were also observed in vivo upon exposure of BRAF-mutant melanoma cell lines or patient-derived xenograft models to MAPK pathway inhibition. Importantly, pharmacologic targeting of YAP reversed treatment-induced excessive collagen deposition, leading to enhancement of BRAF inhibitor efficacy. We conclude that MAPK pathway targeting therapies mechanically reprogram melanoma cells to confer a drug-protective matrix environment. Preventing melanoma cell mechanical reprogramming might be a promising therapeutic strategy for patients on targeted therapies. SIGNIFICANCE: These findings reveal a biomechanical adaptation of melanoma cells to oncogenic BRAF pathway inhibition, which fuels a YAP/MRTF-dependent feed-forward loop associated with tumor stiffening, mechanosensing, and therapy resistance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/10/1927/F1.large.jpg.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Matriz Extracelular/patologia , Sistema de Sinalização das MAP Quinases/fisiologia , Melanoma/patologia , Animais , Linhagem Celular Tumoral , Matriz Extracelular/efeitos dos fármacos , Humanos , Melanoma/genética , Camundongos , Camundongos Nus , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Mol Cancer Ther ; 17(7): 1416-1429, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29703842

RESUMO

Advanced cutaneous melanoma is one of the most challenging cancers to treat because of its high plasticity, metastatic potential, and resistance to treatment. New targeted therapies and immunotherapies have shown remarkable clinical efficacy. However, such treatments are limited to a subset of patients and relapses often occur, warranting validation of novel targeted therapies. Posttranslational modification of proteins by ubiquitin coordinates essential cellular functions, including ubiquitin-proteasome system (UPS) function and protein homeostasis. Deubiquitinating enzymes (DUB) have been associated to multiple diseases, including cancer. However, their exact involvement in melanoma development and therapeutic resistance remains poorly understood. Using a DUB trap assay to label cellular active DUBs, we have observed an increased activity of the proteasome-associated DUB, USP14 (Ubiquitin-specific peptidase 14) in melanoma cells compared with melanocytes. Our survey of public gene expression databases indicates that high expression of USP14 correlates with melanoma progression and with a poorer survival rate in metastatic melanoma patients. Knockdown or pharmacologic inhibition of USP14 dramatically impairs viability of melanoma cells irrespective of the mutational status of BRAF, NRAS, or TP53 and their transcriptional cell state, and overcomes resistance to MAPK-targeting therapies both in vitro and in human melanoma xenografted mice. At the molecular level, we find that inhibition of USP14 rapidly triggers accumulation of poly-ubiquitinated proteins and chaperones, mitochondrial dysfunction, ER stress, and a ROS production leading to a caspase-independent cell death. Our results provide a rationale for targeting the proteasome-associated DUB USP14 to treat and combat melanomas. Mol Cancer Ther; 17(7); 1416-29. ©2018 AACR.


Assuntos
Enzimas Desubiquitinantes/genética , Melanoma/tratamento farmacológico , Terapia de Alvo Molecular , Ubiquitina Tiolesterase/genética , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Enzimas Desubiquitinantes/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/genética , GTP Fosfo-Hidrolases/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , MAP Quinase Quinase 1/genética , Melanócitos/efeitos dos fármacos , Melanoma/genética , Melanoma/patologia , Proteínas de Membrana/genética , Camundongos , Inibidores de Proteassoma/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Ubiquitina Tiolesterase/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Exp Med ; 213(9): 1705-22, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27455953

RESUMO

Multiple myeloma (MM) evolves from a premalignant condition known as monoclonal gammopathy of undetermined significance (MGUS). However, the factors underlying the malignant transformation of plasmocytes in MM are not fully characterized. We report here that Eµ-directed expression of the antiapoptotic Bcl-B protein in mice drives an MM phenotype that reproduces accurately the human disease. Indeed, with age, Eµ-bcl-b transgenic mice develop the characteristic features of human MM, including bone malignant plasma cell infiltration, a monoclonal immunoglobulin peak, immunoglobulin deposit in renal tubules, and highly characteristic bone lytic lesions. In addition, the tumors are serially transplantable in irradiated wild-type mice, underlying the tumoral origin of the disease. Eµ-bcl-b plasmocytes show increased expression of a panel of genes known to be dysregulated in human MM pathogenesis. Treatment of Eµ-bcl-b mice with drugs currently used to treat patients such as melphalan and VELCADE efficiently kills malignant plasmocytes in vivo. Finally, we find that Bcl-B is overexpressed in plasmocytes from MM patients but neither in MGUS patients nor in healthy individuals, suggesting that Bcl-B may drive MM. These findings suggest that Bcl-B could be an important factor in MM disease and pinpoint Eµ-bcl-b mice as a pertinent model to validate new therapies in MM.


Assuntos
Mieloma Múltiplo/etiologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Hipergamaglobulinemia/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mieloma Múltiplo/terapia , Proteínas Proto-Oncogênicas c-bcl-2/análise , Sindecana-1/análise , Proteína bcl-X/fisiologia
13.
Eur J Immunol ; 46(6): 1460-71, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27094031

RESUMO

CD1a expression is considered one of the major characteristics qualifying in vitro human dendritic cells (DCs) during their generation process. Here, we report that CD1A transcription is regulated by a mechanism involving the long and short isoforms of CD99. Using a lentiviral construct encoding for a CD99 short hairpin RNA, we were able to inhibit CD99 expression in human primary DCs. In such cells, CD1a membrane expression increased and CD1A transcripts were much higher in abundance compared to cells expressing CD99 long form (CD99LF). We also show that CD1A transcription is accompanied by a switch in expression from CD99LF to expression at comparable levels of both CD99 isoforms during immature DCs generation in vitro. We demonstrate that CD99LF maintains a lower level of CD1A transcription by up-regulating the phosphorylated form of the ATF-2 transcription factor and that CD99 short form (SF) is required to counteract this regulatory mechanism. Elucidation of the molecular mechanisms related to CD99 alternative splicing will be very helpful to better understand the transcriptional regulatory mechanism of CD1a molecules during DCs differentiation and its involvement in the immune response.


Assuntos
Antígeno 12E7/metabolismo , Fator 2 Ativador da Transcrição/metabolismo , Antígenos CD1/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Regulação da Expressão Gênica , Antígeno 12E7/genética , Antígenos CD1/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem Celular , Células Cultivadas , Células Dendríticas/citologia , Humanos , Monócitos/citologia , Monócitos/imunologia , Monócitos/metabolismo , Fosforilação , Isoformas de Proteínas , Transcrição Gênica
14.
Nat Commun ; 6: 6993, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25925867

RESUMO

Disruption of the endothelial barrier by tumour-derived secreted factors is a critical step in cancer cell extravasation and metastasis. Here, by comparative proteomic analysis of melanoma secretomes, we identify the matricellular protein SPARC as a novel tumour-derived vascular permeability factor. SPARC deficiency abrogates tumour-initiated permeability of lung capillaries and prevents extravasation, whereas SPARC overexpression enhances vascular leakiness, extravasation and lung metastasis. SPARC-induced paracellular permeability is dependent on the endothelial VCAM1 receptor and p38 MAPK signalling. Blocking VCAM1 impedes melanoma-induced endothelial permeability and extravasation. The clinical relevance of our findings is highlighted by high levels of SPARC detected in tumour from human pulmonary melanoma lesions. Our study establishes tumour-produced SPARC and VCAM1 as regulators of cancer extravasation, revealing a novel targetable interaction for prevention of metastasis.


Assuntos
Endotélio Vascular/metabolismo , Melanoma/metabolismo , Metástase Neoplásica , Osteonectina/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Animais , Permeabilidade Capilar , Estudos de Casos e Controles , Linhagem Celular Tumoral , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Pulmonares/secundário , Sistema de Sinalização das MAP Quinases , Melanoma/patologia , Camundongos Nus , Comunicação Parácrina
15.
J Clin Invest ; 125(4): 1396-400, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25705883

RESUMO

Cherubism is a rare autoinflammatory bone disorder that is associated with point mutations in the SH3-domain binding protein 2 (SH3BP2) gene, which encodes the adapter protein 3BP2. Individuals with cherubism present with symmetrical fibro-osseous lesions of the jaw, which are attributed to exacerbated osteoclast activation and defective osteoblast differentiation. Although it is a dominant trait in humans, cherubism appears to be recessively transmitted in mice, suggesting the existence of additional factors in the pathogenesis of cherubism. Here, we report that macrophages from 3BP2-deficient mice exhibited dramatically reduced inflammatory responses to microbial challenge and reduced phagocytosis. 3BP2 was necessary for LPS-induced activation of signaling pathways involved in macrophage function, including SRC, VAV1, p38MAPK, IKKα/ß, RAC, and actin polymerization pathways. Conversely, we demonstrated that the presence of a single Sh3bp2 cherubic allele and pathogen-associated molecular pattern (PAMP) stimulation had a strong cooperative effect on macrophage activation and inflammatory responses in mice. Together, the results from our study in murine genetic models support the notion that infection may represent a driver event in the etiology of cherubism in humans and suggest limiting inflammation in affected individuals may reduce manifestation of cherubic lesions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Querubismo/genética , Inflamação/fisiopatologia , Ativação de Macrófagos/fisiologia , Mutação de Sentido Incorreto , Mutação Puntual , Actinas/química , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Transferência Adotiva , Substituição de Aminoácidos , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Heterozigoto , Humanos , Inflamação/microbiologia , Lipopolissacarídeos , Macrófagos Peritoneais/transplante , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Osteoclastos/metabolismo , Osteoclastos/patologia , Fagocitose/fisiologia , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/fisiologia
16.
Cell Microbiol ; 16(9): 1378-90, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24712562

RESUMO

Enhanced apoptosis of BCG-infected macrophages has been shown to induce stronger dendritic cell-mediated cross-priming of T cells, leading to higher protection against tuberculosis (TB). Uncovering host effectors underlying BCG-induced apoptosis may then prove useful to improve BCG efficacy through priming macrophage apoptosis. Her we report that BCG-mediated apoptosis of human macrophages relies on FOXO3 transcription factor activation. BCG induced a significant apoptosis of THP1 (TDMs) and human monocytes (MDMs)-derived macrophages when a high moi was used, as shown by annexin V/7-AAD staining. BCG-induced apoptosis was associated with dephosphorylation of the prosurvival activated threonine kinase (Akt) and its target FOXO3. Cell fractionation and immunofluorescence microscopy showed translocation of FOXO3 to the nucleus in BCG-infected cells, concomitantly with an increase of FOXO3 transcriptional activity. Moreover, FOXO3 expression knock-down by small interfering RNA (siRNA) partially inhibited the BCG-induced apoptosis. Finally, real-time quantitative PCR (qRT-PCR) analysis of the expression profile of BCG-infected macrophages showed an upregulation of two pro-apoptotic targets of FOXO3, NOXA and p53 upregulated modulator of apoptosis (PUMA). Our results thus indicate that FOXO3 plays an important role in BCG-induced apoptosis of human macrophages and may represent a potential target to improve vaccine efficacy through enhanced apoptosis-mediated cross-priming of T cells.


Assuntos
Apoptose/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Macrófagos/microbiologia , Mycobacterium bovis/fisiologia , Apoptose/genética , Western Blotting , Linhagem Celular Tumoral , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Blood ; 123(23): 3585-95, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24677544

RESUMO

Cytarabine (cytosine arabinoside) is one of the most effective drugs for the treatment of patients diagnosed with acute myeloid leukemia (AML). Despite its efficiency against AML cells, the emergence of drug resistance due to prolonged chemotherapy in most patients is still a major obstacle. Several studies have shown that drug resistance mechanisms alter the sensitivity of leukemia cells to immune system effector cells. To investigate this phenomenon, parental acute myeloid cell lines, HL-60 and KG-1, were continuously exposed to increasing doses of cytarabine in order to establish equivalent resistant cell lines, HL-60(R) and KG-1(R). Our data indicate that cytarabine-resistant cells are more susceptible to natural killer (NK)-mediated cell lysis as compared with parental cytarabine-sensitive cells. The increased susceptibility correlates with the induction of UL-16 binding proteins (ULBP) 1/2/3 and NK group 2, member D (NKG2D) ligands on target cells by a mechanism involving c-Myc induction. More importantly, chromatin immunoprecipitation assay revealed that ULBP1/3 are direct targets of c-Myc. Using drug-resistant primary AML blasts as target cells, inhibition of c-Myc resulted in decreased expression of NKG2D ligands and the subsequent impairment of NK cell lysis. This study provides for the first time, the c-Myc dependent regulation of NKG2D ligands in AML.


Assuntos
Citotoxicidade Imunológica/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Células Matadoras Naturais/imunologia , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogênicas c-myc/fisiologia , Antimetabólitos Antineoplásicos/farmacologia , Morte Celular/genética , Células Cultivadas , Citarabina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/imunologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Regulação Leucêmica da Expressão Gênica , Células HL-60 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células Matadoras Naturais/metabolismo , Leucemia Mieloide Aguda/metabolismo , Ligantes , Subfamília K de Receptores Semelhantes a Lectina de Células NK/agonistas , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo
18.
PLoS One ; 7(7): e40378, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22911700

RESUMO

During progression of melanoma, malignant melanocytes can be reprogrammed into mesenchymal-like cells through a process similar to epithelial-mesenchymal transition (EMT), which is associated with downregulation of the junctional protein E-cadherin and acquisition of a migratory phenotype. Recent evidence supports a role for SLUG, a transcriptional repressor of E-cadherin, as a melanocyte lineage transcription factor that predisposes to melanoma metastasis. However, the signals responsible for SLUG expression in melanoma are unclear and its role in the invasive phenotype is not fully elucidated. Here, we report that SLUG expression and activation is driven by SPARC (also known as osteonectin), a secreted extracellular matrix-associated factor that promotes EMT-like changes. Ectopic expression or knockdown of SPARC resulted in increased or reduced expression of SLUG, respectively. SLUG increase occurred concomitantly with SPARC-mediated downregulation of E-cadherin and P-cadherin, and induction of mesenchymal traits in human melanocytes and melanoma cells. Pharmacological blockade of PI3 kinase/AKT signaling impeded SPARC-induced SLUG levels and cell migration, whereas adenoviral introduction of constitutively active AKT allowed rescue of SLUG and migratory capabilities of SPARC knockdown cells. We also observed that pharmacological inhibition of oncogenic BRAF(V600E) using PLX4720 did not influence SLUG expression in melanoma cells harboring BRAF(V600E). Furthermore, SLUG is a bona fide transcriptional repressor of E-cadherin as well as a regulator of P-cadherin in melanoma cells and its knockdown attenuated invasive behavior and blocked SPARC-enhanced cell migration. Notably, inhibition of cell migration in SPARC-depleted cells was rescued by expression of a SLUG transgene. In freshly isolated metastatic melanoma cells, a positive association between SPARC and SLUG mRNA levels was also found. These findings reveal that autocrine SPARC maintains heightened SLUG expression in melanoma cells and indicate that SPARC may promote EMT-associated tumor invasion by supporting AKT-dependent upregulation of SLUG.


Assuntos
Transição Epitelial-Mesenquimal/genética , Melanoma/genética , Melanoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/metabolismo , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Melanócitos/metabolismo , Melanoma/patologia , Invasividade Neoplásica , Osteonectina , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Interferência de RNA , Transdução de Sinais , Fatores de Transcrição da Família Snail , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética
19.
PLoS One ; 7(6): e38808, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22719951

RESUMO

BACKGROUND: Isolated limb perfusion with TNF-α and melphalan is used with remarkable efficiency to treat unresectable limb sarcomas. Here we tested the ability of TNF-α to directly induce apoptosis of sarcoma cells. In addition, we investigated the impact of p53 in the regulation of such effect. METHODOLOGY/PRINCIPAL FINDINGS: We first analysed the ability of TNF-α to induce apoptosis in freshly isolated tumour cells. For this purpose, sarcoma tumours (n = 8) treated ex vivo with TNF-α were processed for TUNEL staining. It revealed substantial endothelial cell apoptosis and levels of tumour cell apoptosis that varied from low to high. In order to investigate the role of p53 in TNF-α-induced cell death, human sarcoma cell lines (n = 9) with different TP53 and MDM2 status were studied for their sensitivity to TNF-α. TP53(Wt) cell lines were sensitive to TNF-α unless MDM2 was over-expressed. However, TP53(Mut) and TP53(Null) cell lines were resistant. TP53 suppression in TP53(Wt) cell lines abrogated TNF-α sensitivity and TP53 overexpression in TP53(Null) cell lines restored it. The use of small molecules that restore p53 activity, such as CP-31398 or Nutlin-3a, in association with TNF-α, potentiated the cell death of respectively TP53(Mut) and TP53(Wt)/MDM2(Ampl). In particular, CP-31398 was able to induce p53 as well as some of its apoptotic target genes in TP53(Mut) cells. In TP53(Wt)/MDM2(Ampl) cells, Nutlin-3a effects were associated with a decrease of TNF-α-induced NF-κB-DNA binding and correlated with a differential regulation of pro- and anti-apoptotic genes such as TP53BP2, GADD45, TGF-ß1 and FAIM. CONCLUSION/SIGNIFICANCE: More effective therapeutic approaches are critically needed for the treatment of unresectable limb sarcomas. Our results show that restoring p53 activity in sarcoma cells correlated with increased sensitivity to TNF-α, suggesting that this strategy may be an important determinant of TNF-α-based sarcomas treatment.


Assuntos
Genes p53 , Sarcoma/fisiopatologia , Fator de Necrose Tumoral alfa/farmacologia , Apoptose , Western Blotting , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Marcação In Situ das Extremidades Cortadas , Mutação , Reação em Cadeia da Polimerase em Tempo Real , Sarcoma/patologia
20.
J Immunol ; 187(8): 4031-9, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21911602

RESUMO

Hypoxia is a major feature of the solid tumor microenvironment and is known to be associated with tumor progression and poor clinical outcome. Recently, we reported that hypoxia protects human non-small cell lung tumor cells from specific lysis by stabilizing hypoxia-inducible factor-1α and inducing STAT3 phosphorylation. In this study, we show that NANOG, a transcription factor associated with stem cell self renewal, is a new mediator of hypoxia-induced resistance to specific lysis. Our data indicate that under hypoxic conditions, NANOG is induced at both transcriptional and translational levels. Knockdown of the NANOG gene in hypoxic tumor cells is able to significantly attenuate hypoxia-induced tumor resistance to CTL-dependent killing. Such knockdown correlates with an increase of target cell death and an inhibition of hypoxia-induced delay of DNA replication in these cells. Interestingly, NANOG depletion results in inhibition of STAT3 phosphorylation and nuclear translocation. To our knowledge, this study is the first to show that hypoxia-induced NANOG plays a critical role in tumor cell response to hypoxia and promotes tumor cell resistance to Ag-specific lysis.


Assuntos
Hipóxia Celular/imunologia , Proteínas de Homeodomínio/biossíntese , Neoplasias/imunologia , Linfócitos T Citotóxicos/imunologia , Western Blotting , Hipóxia Celular/genética , Linhagem Celular Tumoral , Separação Celular , Citometria de Fluxo , Expressão Gênica , Regulação da Expressão Gênica/imunologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Humanos , Microscopia Confocal , Proteína Homeobox Nanog , Neoplasias/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T Citotóxicos/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...