Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrasonics ; 139: 107275, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508082

RESUMO

An 8 mm diameter, image-guided, annular array histotripsy transducer was fabricated and characterized. The array was laser etched on a 5 MHz, 1-3 dice and fill, PZT-5H/epoxy composite with a 45 % volume fraction. Flexible PCBs were used to electrically connect to the array elements using wirebonds. The array was backed with a low acoustic impedance epoxy mixture. A 3.6 by 3.8 mm, 64-element, 30 MHz phased array imaging probe was positioned in the center hole, to co-align the imaging plane with the bubble cloud produced by the therapy array. A custom 16-channel high voltage pulse generator was used to test the annular array for focal lengths ranging from 3- to 8-mm. An aluminum lens-focussed transducer with a 7 mm focal length was fabricated using the same piezocomposite and backing material and tested along with the histotripsy array. Simulated results from COMSOL FEM models were compared to measured results for low voltage characterization of the array and lens-focussed transducer. The measured transmit sensitivity of the array ranged from 0.113 to 0.167 MPa/V, while the lens-focussed transducer was 0.192 MPa/V. Simulated values were 0.160 to 0.174 MPa/V and 0.169 MPa/V, respectively. The measured acoustic fields showed a significantly increased depth-of-field compared the lens-focussed transducer, while the beamwidths of the array focus were comparable to the lens. The measured cavitation voltage in water was between 254 V and 498 V depending on the focal length, and 336 V for the lens-focussed transducer. The array had a lower cavitation voltage than the lens-focussed transducer for a comparable operating depth. The histotripsy array was tested in a tissue phantom and an in vivo rat brain. It was used to produce an elongated lesion in the brain by electronically steering the focal length from 3- to 8-mm axially. Real time ultrasound imaging with a Doppler overlay was used to target the tissue and monitor ablation progress, and histology confirmed the targeted tissue was fully homogenized.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Ultrassonografia , Imagens de Fantasmas
2.
BME Front ; 2022: 9794321, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37850178

RESUMO

Objective. Initial performance evaluation of a system for simultaneous high-resolution ultrasound imaging and focused mechanical submillimeter histotripsy ablation in rat brains. Impact Statement. This study used a novel combination of high-resolution imaging and histotripsy in an endoscopic form. This would provide neurosurgeons with unprecedented accuracy in targeting and executing nonthermal ablations in minimally invasive surgeries. Introduction. Histotripsy is a safe and effective nonthermal focused ablation technique. However, neurosurgical applications, such as brain tumor ablation, are difficult due to the presence of the skull. Current devices are too large to use in the minimally invasive approaches surgeons prefer. We have developed a combined imaging and histotripsy endoscope to provide neurosurgeons with a new tool for this application. Methods. The histotripsy component had a 10 mm diameter, operating at 6.3 MHz. Affixed within a cutout hole in its center was a 30 MHz ultrasound imaging array. This coregistered pair was used to ablate brain tissue of anesthetized rats while imaging. Histological sections were examined, and qualitative descriptions of ablations and basic shape descriptive statistics were generated. Results. Complete ablations with submillimeter area were produced in seconds, including with a moving device. Ablation progress could be monitored in real time using power Doppler imaging, and B-mode was effective for monitoring post-ablation bleeding. Collateral damage was minimal, with a 100 µm maximum distance of cellular damage from the ablation margin. Conclusion. The results demonstrate a promising hardware suite to enable precision ablations in endoscopic procedures or fundamental preclinical research in histotripsy, neuroscience, and cancer.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33961553

RESUMO

A forward-looking miniature histotripsy transducer has been developed that incorporates an acoustic lens and dual-frequency stacked transducers. An acoustic lens is used to increase the peak negative pressure through focal gain and the dual-frequency transducers are designed to increase peak negative pressure by summing the pressure generated by each transducer individually. Four lens designs, each with an f -number of approximately 1, were evaluated in a PZT5A composite transducer. The finite-element model (FEM) predicted axial beamwidths of 1.61, 2.40, 2.84, and 2.36 mm for the resin conventional, resin Fresnel, silicone conventional, and silicone Fresnel lenses, respectively; the measured axial beamwidths were 1.30, 2.28, 2.71, and 2.11 mm, respectively. Radial beamwidths from the model were between 0.32 and 0.35 mm, while measurements agreed to within 0.2 mm. The measured peak negative was 0.150, 0.124, 0.160, and 0.160 MPa/V for the resin conventional, resin Fresnel, silicone conventional, and silicone Fresnel lenses, respectively. For the dual-frequency device, the 5-MHz (therapy) transducer had a measured peak negative pressure of 0.136 MPa/V for the PZT5A composite and 0.163 MPa/V for the PMN-PT composite. The 1.2-MHz (pump) transducer had a measured peak negative pressure of 0.028 MPa/V. The pump transducer significantly lowered the cavitation threshold of the therapy transducer. The dual-frequency device was tested on an ex vivo rat brain, ablating tissue at up to 4-mm depth, with lesion sizes as small as [Formula: see text].


Assuntos
Acústica , Transdutores , Desenho de Equipamento
4.
ACS Comb Sci ; 13(6): 639-45, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-21978099

RESUMO

A ternary library of 64 ZnO/CuO/CuCl(2) impregnated activated carbon samples was synthesized and screened automatically using a combinatorial (combi) method. The ability of the samples to adsorb toxic gases was screened gravimetrically. The stoichiometric ratio of reaction (SRR) between the moles of toxicant and the total moles of impregnant was obtained from the calculated mass increase of the samples after chemisorption, with a high SRR indicating high efficiency of toxicant removal. The combi samples that exhibited good dry SO(2) and NH(3) adsorption were prepared in bulk using the incipient wetness method and were evaluated for multigas respirator function by dynamic adsorption studies of SO(2), NH(3), HCN, and C(6)H(12) gases in either dry or humid conditions at ambient temperature. The bulk samples showed equivalent gas adsorption capacities when exposed to the different challenge gases indicating the value of the combi method for initial screening. Cu(2)Cl(OH)(3) was identified to be a potential multigas adsorbent.


Assuntos
Carbono/química , Técnicas de Química Combinatória/métodos , Cobre/química , Gases/química , Dispositivos de Proteção Respiratória , Óxido de Zinco/química , Adsorção , Amônia/química , Cianeto de Hidrogênio/química , Óxidos/química , Compostos de Enxofre/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...