Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 3(12): 16839-16849, 2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458310

RESUMO

Selective transformation of levulinic acid (LA) to γ-valerolactone (GVL) using novel heterogeneous catalysts is one of the promising strategies for viable biomass processing. In this framework, we developed a continuous flow process for the selective hydrogenation of LA to GVL using several nanostructured Ni/SiO2 catalysts. The structural, textural, acidic, and redox properties of Ni/SiO2 catalysts, tuned by selectively varying the Ni amount from 5 to 40 wt %, were critically investigated using numerous materials characterization techniques. Electron microscopy images showed the formation of uniformly dispersed Ni nanoparticles on the SiO2 support, up to 30% Ni loading (average particle size is 9.2 nm), followed by a drastic increase in the particles size (21.3 nm) for 40% Ni-loaded catalyst. The fine dispersion of Ni particles has elicited a synergistic metal-support interaction, especially in 30% Ni/SiO2 catalyst, resulting in enhanced acidic and redox properties. Among the various catalysts tested, the 30% Ni/SiO2 catalyst showed the best performance with a remarkable 98% selectivity of GVL at complete conversion of LA for 2 h reaction time. Interestingly, this catalyst showed a steady selectivity to GVL (>97%), with a 54.5% conversion of LA during 20 h time-on-stream. The best performance of 30% Ni/SiO2 catalyst was attributed to well-balanced catalytic properties, such as ample amounts of strong acidic sites and abundant active metal sites. The obtained results show a great potential of applying earth-abundant nickel/silica catalysts for upgrading biomass platform molecules into value-added chemicals and high-energy-density fuels.

2.
Langmuir ; 32(9): 2208-15, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26886079

RESUMO

This work investigates the structure-activity properties of CuOx-decorated CeO2 nanocubes with a meticulous scrutiny on the role of the CuOx/CeO2 nanointerface in the catalytic oxidation of diesel soot, a critical environmental problem all over the world. For this, a systematic characterization of the materials has been undertaken using transmission electron microscopy (TEM), transmission electron microscopy-energy-dispersive X-ray spectroscopy (TEM-EDS), high-angle annular dark-field-scanning transmission electron microscopy (HAADF-STEM), scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS), X-ray diffraction (XRD), Raman, N2 adsorption-desorption, and X-ray photoelectron spectroscopy (XPS) techniques. The TEM images show the formation of nanosized CeO2 cubes (∼25 nm) and CuOx nanoparticles (∼8.5 nm). The TEM-EDS elemental mapping images reveal the uniform decoration of CuOx nanoparticles on CeO2 nanocubes. The XPS and Raman studies show that the decoration of CuOx on CeO2 nanocubes leads to improved structural defects, such as higher concentrations of Ce(3+) ions and abundant oxygen vacancies. It was found that CuOx-decorated CeO2 nanocubes efficiently catalyze soot oxidation at a much lower temperature (T50 = 646 K, temperature at which 50% soot conversion is achieved) compared to that of pristine CeO2 nanocubes (T50 = 725 K) under tight contact conditions. Similarly, a huge 91 K difference in the T50 values of CuOx/CeO2 (T50 = 744 K) and pristine CeO2 (T50 = 835 K) was found in the loose-contact soot oxidation studies. The superior catalytic performance of CuOx-decorated CeO2 nanocubes is mainly attributed to the improved redox efficiency of CeO2 at the nanointerface sites of CuOx-CeO2, as evidenced by Ce M5,4 EELS analysis, supported by XRD, Raman, and XPS studies, a clear proof for the role of nanointerfaces in the performance of heterostructured nanocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...