Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 89(10): 1264-75, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17714848

RESUMO

NRH:quinone oxidoreductase 2 (QR2) is a long forgotten oxidoreductive enzyme that metabolizes quinones and binds melatonin. We used the potency of the RNA interference (RNAi)-mediated gene silencing to build a cellular model in which the role of QR2 could be studied. Because standard approaches were poorly successful, we successively used: (1) two chemically synthesized fluorescent small interfering RNA (siRNA) duplexes designed and tested for their gene silencing capacity leading to a maximal 40% QR2 gene silencing 48h post-transfection; (2) double transfection and cell-sorting of high fluorescent siRNA-transfected HT22 cells further enhancing QR2 RNAi silencing to 88%; (3) stable QR2 knock-down HT22 cell lines established with H1and U6 promoter driven QR2 short hairpin RNA (shRNA) encoding vectors, resulting in a 71-80% reduction of QR2 enzymatic activity in both QR2 shRNA HT22 cells. Finally, as a first step in the study of this cellular model, we observed a 42-48% reduction of menadione/BNAH-mediated toxicity in QR2 shRNA cells compared to the wild-type HT22 cells. Although becoming widespread and in some cases effective, siRNA-mediated cellular knock-down proves in the present work to be of marginal efficiency. Much development is required for this technique to be of general application.


Assuntos
NAD(P)H Desidrogenase (Quinona)/genética , Interferência de RNA , Animais , Linhagem Celular , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cinética , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , NAD(P)H Desidrogenase (Quinona)/metabolismo , RNA Interferente Pequeno/genética , Transfecção
2.
Biochem Pharmacol ; 71(1-2): 74-88, 2005 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-16293234

RESUMO

Melatonin acts through a series of molecular targets: the G-protein coupled receptors, MT1 and MT2, and a third binding site, MT3, recently identified as the enzyme NRH:quinone oxydoreductase 2 (QR2). The relationship between the multiple physiological functions of melatonin and this enzyme remains unclear. Because of the relationship of QR2 with the redox status of cells, these studies could bring the first tools for a molecular rationale of the antioxidant effects of melatonin. In the present paper, we used a QR2-stably expressing cell line and hamster kidneys to compare the 2-[125I]-iodomelatonin and 2-[125I]-iodo-5-methoxycarbonylamino-N-acetyltryptamine binding data, and to characterize the MT3 binding site. We designed and tested compounds from two distinct chemicals series in a displacement assay of the two MT3 ligands, 2-[125I]-iodomelatonin and 2-[125I]-iodo-5-methoxycarbonylamino-N-acetyltryptamine from their cloned target. We also tested their ability to inhibit QR2 catalytic activity. These compounds were separated into two classes: those that bind within the catalytic site (and being inhibitors) and those that bind outside it (and therefore not being inhibitors). Compounds range from potent ligands (K(i) = 1 nM) to potent inhibitors (14 nM), and include one compound [NMDPEF: N-[2-(2-methoxy-6H-dipyrido[2,3-a:3,2-e]pyrrolizin-11-yl)ethyl]-2-furamide] active on both parameters in the low nanomolar range. To dissect the physio-pathological pathways in which QR2, MT3 and melatonin meet, one needs more compounds binding to MT3 and/or inhibitors of QR2 enzymatic activity. The compounds described in the present paper are new tools for such a task.


Assuntos
Melatonina/metabolismo , Quinona Redutases/metabolismo , Animais , Sítios de Ligação , Ligação Competitiva , Células CHO , Cricetinae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...