Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(6)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37374848

RESUMO

Recent developments in MEMS technologies have made such devices attractive for use in applications that involve precision engineering and scalability. In the biomedical industry, MEMS devices have gained popularity in recent years for use as single-cell manipulation and characterisation tools. A niche application is the mechanical characterisation of single human red blood cells, which may exhibit certain pathological conditions that impart biomarkers of quantifiable magnitude that are potentially detectable via MEMS devices. Such applications come with stringent thermal and structural specifications wherein the potential device candidates must be able to function with no exceptions. This work presents a state-of-the-art numerical modelling methodology that is capable of accurately predicting MEMS device performance in various media, including aqueous ones. The method is strongly coupled in nature, whereby thermal as well as structural degrees of freedom are transferred to and from finite element and finite volume solvers at every iteration. This method therefore provides MEMS design engineers with a reliable tool that can be used in design and development stages and helps to avoid total reliability on experimental testing. The proposed numerical model is validated via a series of physical experiments. Four MEMS electrothermal actuators with cascaded V-shaped drivers are presented. With the use of the newly proposed numerical model as well as the experimental testing, the MEMS devices' suitability for biomedical applications is confirmed.

2.
J Mech Behav Biomed Mater ; 142: 105882, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37148778

RESUMO

Ultra-high molecular weight polyethylene (UHMWPE) is commonly used as soft-bearing material in total joint replacements. However, the release of polymeric wear debris is still related to complications leading to aseptic loosening. Recently, a novel hip prosthesis showing reduced wear was developed by the authors of this study, consisting of unidirectional cylindrical articulations instead of the conventional multidirectional ball-and-socket design. This study evaluates four different theoretical wear models applied to this new design. The calculated volumetric wear was compared to experimental results. Although all models provided a good indication of the wear rates for the ball-and-socket prosthesis, they exhibited high discrepancies when predicting the amount of wear of the new unidirectional design. It was observed that the closest agreement with experimental results was obtained by the models that consider the friction-induced molecular orientation phenomenon exhibited by UHMWPE.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Humanos , Polietileno , Falha de Prótese , Polietilenos , Articulação do Quadril/cirurgia , Desenho de Prótese
3.
Micromachines (Basel) ; 13(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35056172

RESUMO

Microelectromechanical systems (MEMS) are the instruments of choice for high-precision manipulation and sensing processes at the microscale. They are, therefore, a subject of interest in many leading industrial and academic research sectors owing to their superior potential in applications requiring extreme precision, as well as in their use as a scalable device. Certain applications tend to require a MEMS device to function with low operational temperatures, as well as within fully immersed conditions in various media and with different flow parameters. This study made use of a V-shaped electrothermal actuator to demonstrate a novel, state-of-the-art numerical methodology with a two-way coupled analysis. This methodology included the effects of fluid-structure interaction between the MEMS device and its surrounding fluid and may be used by MEMS design engineers and analysts at the design stages of their devices for a more robust product. Throughout this study, a thermal-electric finite element model was strongly coupled to a finite volume model to incorporate the spatially varying cooling effects of the surrounding fluid (still air) onto the V-shaped electrothermal device during steady-state operation. The methodology was compared to already established and accepted analysis methods for MEMS electrothermal actuators in still air. The maximum device temperatures for input voltages ranging from 0 V to 10 V were assessed. During the postprocessing routine of the two-way electrothermal actuator coupled analysis, a spatially-varying heat transfer coefficient was evident, the magnitude of which was orders of magnitude larger than what is typically applied to macro-objects operating in similar environmental conditions. The latter phenomenon was correlated with similar findings in the literature.

4.
Heliyon ; 5(9): e02522, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31687606

RESUMO

Current trends in the biodegradable scaffold industry call for powder metallurgy methods in which compression cannot be applied due to the nature of the scaffold template itself and the need to retain the shape of an underlying template throughout the fabrication process. Iron alloys have been shown to be good candidates for biomedical applications where load support is required. Fe-Mn alloys were researched extensively for this purpose. Current research shows that all metallurgical characterisation and corrosion test on Fe-Mn and Fe-Mn-Ag non pre-alloyed powder alloys are performed on alloys which are initially pressed into greens and subsequently sintered. In order to combine the cutting-edge field of biodegradable metallic alloys with scaffold production, metallurgical characterisation of pressed and non-pressed Fe, Fe-Mn and Fe-Mn-Ag sintered elemental powder compacts was carried out in this study. This was performed along with determination of the corrosion rate of the same alloys in in vitro mimicking solutions. These solutions were synthesised to mimic the osteo environment in which the final scaffolds are to be used. Both pressed and non-pressed alloys formed an austenite phase under the right sintering conditions. The corrosion rate of the non-pressed alloy was greater than that of its pressed counterpart. In a potentiodynamic testing scenario, addition of silver to the alloy formed a separate silver phase which galvanically increased the corrosion rate of the pressed alloy. This result wasn't replicated in the non-pressed alloys in which the corrosion rate was seen to remain similar to the non-silver-bearing alloy counterparts.

5.
Micromachines (Basel) ; 10(3)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823372

RESUMO

Microelectromechanical systems (MEMS) have established themselves within various fields dominated by high-precision micromanipulation, with the most distinguished sectors being the microassembly, micromanufacturing and biomedical ones. This paper presents a horizontal electrothermally actuated 'hot and cold arm' microgripper design to be used for the deformability study of human red blood cells (RBCs). In this study, the width and layer composition of the cold arm are varied to investigate the effects of dimensional and material variation of the cold arm on the resulting temperature distribution, and ultimately on the achieved lateral displacement at the microgripper arm tips. The cold arm widths investigated are 14 µ m, 30 µ m, 55 µ m, 70 µ m and 100 µ m. A gold layer with a thin chromium adhesion promoter layer is deposited on the top surface of each of these cold arms to study its effect on the performance of the microgripper. The resultant ten microgripper design variants are fabricated using a commercially available MEMS fabrication technology known as a silicon-on-insulator multi-user MEMS process (SOIMUMPs)™. This process results in an overhanging 25 µ m thick single crystal silicon microgripper structure having a low aspect ratio (width:thickness) value compared to surface micromachined structures where structural thicknesses are of the order of 2 µ m. Finite element analysis was used to numerically model the microgripper structures and coupled electrothermomechanical simulations were implemented in CoventorWare ® . The numerical simulations took into account the temperature dependency of the coefficient of thermal expansion, the thermal conductivity and the electrical conductivity properties in order to achieve more reliable results. The fabricated microgrippers were actuated under atmospheric pressure and the experimental results achieved through optical microscopy studies conformed with those predicted by the numerical models. The gap opening and the temperature rise at the cell gripping zone were also compared for the different microgripper structures in this work, with the aim of identifying an optimal microgripper design for the deformability characterisation of RBCs.

6.
Micromachines (Basel) ; 9(3)2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-30424042

RESUMO

Microgrippers are typical microelectromechanical systems (MEMS) that are widely used for micromanipulation and microassembly in both biological and micromanufacturing fields. This paper presents the design, modelling, fabrication and experimental testing of an electrothermal microgripper based on a 'hot and cold arm' actuator design that is suitable for the deformability characterisation of human red blood cells (RBCs). The analysis of the mechanical properties of human RBCs is of great interest in the field of medicine as pathological alterations in the deformability characteristics of RBCs have been linked to a number of diseases. The study of the microgripper's steady-state performance is initially carried out by the development of a lumped analytical model, followed by a numerical model established in CoventorWare® (Coventor, Inc., Cary, NC, USA) using multiphysics finite element analysis. Both analytical and numerical models are based on an electothermomechanical analysis, and take into account the internal heat generation due to the applied potential, as well as conduction heat losses through both the anchor pads and the air gap to the substrate. The models are used to investigate key factors of the actuator's performance including temperature distribution, deflection and stresses based on an elastic analysis of structures. Results show that analytical and numerical values for temperature and deflection are in good agreement. The analytical and computational models are then validated experimentally using a polysilicon microgripper fabricated by the standard surface micromachining process, PolyMUMPs™ (Durham, NC, USA). The microgripper's actuation is characterised at atmospheric pressure by optical microscopy studies. Experimental results for the deflection of the microgripper arm tips are found to be in good agreement with the analytical and numerical results, with process-induced variations and the non-linear temperature dependence of the material properties accounting for the slight discrepancies observed. The microgripper is shown to actuate to a maximum opening displacement of 9 µ m at an applied voltage of 3 V, thus being in line with the design requirement of an approximate opening of 8 µ m for securing and characterising a RBC.

7.
Mater Sci Eng C Mater Biol Appl ; 75: 1366-1375, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28415428

RESUMO

Several problems are associated with corrosion-wear occurring on metal-on-metal hip implants made out of cobalt-chromium based alloys. Low temperature carburizing, a process that creates a hard and corrosion resistant diffused layer in Cobalt-Chromium-Molybdenum (CoCrMo) alloys, known as S-phase, may be a possible solution towards mitigating these problems. In this work, static- and tribo-corrosion testing involving an alumina versus CoCrMo (untreated and carburized) were conducted in Ringer's solution. Electrochemical impedance spectroscopy was used to compare impedance plots attained before and after sliding so as to understand how the metal-electrolyte interface is affected by rubbing. Both untreated and carburized CoCrMo experienced extensive reduction in corrosion resistance following sliding wear damage such that one should expect a considerably deteriorated performance of both surfaces in a tribocorrosion application. The structure of the interface was relatively unaffected after sliding at the equilibrium and passive potentials. This implies that the layers making up the interface before sliding were still present after sliding. However, their properties changed - the interface's real resistance dropped while its capacitance increased. The former was linked to a weaker, damaged passive film while the latter was linked to accumulation of wear debris and corrosion products.


Assuntos
Prótese de Quadril , Vitálio/química , Corrosão , Espectroscopia Dielétrica , Eletrólitos/química , Humanos , Propriedades de Superfície
8.
J Biomed Mater Res B Appl Biomater ; 105(6): 1503-1513, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27120400

RESUMO

Two duplex coatings, Cr(N)/S and Cr(C)/S, were deposited on 316 L stainless steel by magnetron sputtering. The effectiveness of these duplex coatings in improving the tribocorrosion behavior of medical alloys under elastic contact conditions has been demonstrated in a recent publication. The present work focused on the response of these duplex coatings to tribocorrosion under plastic contact conditions. Tribocorrosion tests were conducted in 0.89% NaCl solution at 37°C at an initial contact pressure of 740 MPa and under unidirectional sliding conditions for sliding duration up to 24 h. The results showed that during sliding in the corrosive solution, the duplex coatings were plastically deformed into the substrate to a depth about 1 µm. The Cr(C)/S duplex coating had sufficient ductility to accommodate the deformation without cracking, such that it was worn through gradually, leading to the gradual increase in open circuit potential (OCP) and coefficient of friction (COF). On the other hand, the Cr(N)/S duplex coating suffered from cracking at all tested potentials, leading to coating blistering after prolonged sliding at OCP and stable pit formation in the substrate beneath the coating at applied anodic potentials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1503-1513, 2017.


Assuntos
Cromo/química , Materiais Revestidos Biocompatíveis/química , Teste de Materiais , Cloreto de Sódio/química , Aço Inoxidável/química , Corrosão , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...