Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biol Direct ; 18(1): 41, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501163

RESUMO

Duchenne muscular dystrophy (DMD) is a severe form of muscular dystrophy caused by mutations in the dystrophin gene. We characterized which isoforms of dystrophin were expressed by human induced pluripotent stem cell (hiPSC)-derived cardiac fibroblasts obtained from control and DMD patients. Distinct dystrophin isoforms were observed; however, highest molecular weight isoform was absent in DMD patients carrying exon deletions or mutations in the dystrophin gene. The loss of the full-length dystrophin isoform in hiPSC-derived cardiac fibroblasts from DMD patients resulted in deficient formation of actin microfilaments and a metabolic switch from mitochondrial oxidation to glycolysis. The DMD hiPSC-derived cardiac fibroblasts exhibited a dysregulated mitochondria network and reduced mitochondrial respiration, with enhanced compensatory glycolysis to sustain cellular ATP production. This metabolic remodeling was associated with an exacerbated myofibroblast phenotype and increased fibroblast activation in response to pro fibrotic challenges. As cardiac fibrosis is a critical pathological feature of the DMD heart, the myofibroblast phenotype induced by the absence of dystrophin may contribute to deterioration in cardiac function. Our study highlights the relationship between cytoskeletal dynamics, metabolism of the cell and myofibroblast differentiation and provides a new mechanism by which inactivation of dystrophin in non-cardiomyocyte cells may increase the severity of cardiopathy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofia Muscular de Duchenne , Humanos , Distrofina/genética , Distrofina/metabolismo , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Fenótipo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patologia , Fibroblastos/metabolismo , Fibrose , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
3.
Stem Cell Res ; 67: 103018, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36630840

RESUMO

Coronavirus disease (COVID-19) is an infectious disease caused by SARS-CoV-2 virus, leading to mild to severe respiratory symptoms. Cardiovascular involvement is frequent and mainly manifests with myocarditis, arrhythmias, cardiac arrests, heart failure and coagulation abnormality. We generated human induced pluripotent stem cells (hiPSCs) from four COVID-19 patients, all characterized by increased levels of high-sensitivity Troponin I (hsTnI) during the infection acute phase, who developed (n = 2) or not (n = 2) severe myocarditis, as COVID-19 complication. The established hiPSCs were characterized for pluripotency and genomic stability, and constitute a useful resource for studying the mechanisms underlying the variability in COVID-19 severe cardiac manifestations.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Miocardite , Humanos , SARS-CoV-2 , Troponina
4.
Stem Cell Res ; 64: 102889, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35961103

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked syndrome that affects skeletal and cardiac muscle and is caused by mutation of the dystrophin gene. Induced pluripotent stem cells (iPSCs) were generated from dermal fibroblasts by electroporation with episomal vectors containing the reprogramming factors (OCT4, SOX2, LIN28, KLF4, and l-MYC). The donor carried an out-of-frame deletion of exons 45-50 of the dystrophin gene. The established iPSC line exhibited normal morphology, expressed pluripotency markers, had normal karyotype and possessed trilineage differentiation potential.


Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofia Muscular de Duchenne , Humanos , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Éxons/genética , Diferenciação Celular , Fibroblastos/metabolismo , Reprogramação Celular
5.
Pharmaceuticals (Basel) ; 14(9)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34577636

RESUMO

In the past, cannabis was commonly associated with mysticism and illegality. Fortunately, in recent years perspectives and discourses have changed. More prominence has been given to the rigorous scientific effort that led to the discovery of cannabis' many physiological actions and endogenous signalling mechanisms. The endocannabinoid system is a complex and heterogeneous pro-homeostatic network comprising different receptors with several endogenous ligands, numerous metabolic enzymes and regulatory proteins. Therefore, it is not surprising that alterations and dysfunctions of the endocannabinoid system are observed in almost every category of disease. Such high degree of pathophysiological involvement suggests the endocannabinoid system is a promising therapeutic target and prompted the translation of resurgent scientific findings into clinical therapies. Shifting attitudes toward cannabis also raised other matters such as increased patient awareness, prescription requests, self-medication, recreational use, recognition of new knowledge gaps, renewed scientific activity, and seemingly exponential growth of the cannabis industry. This review, following a general overview of cannabis and the endocannabinoid system, assiduously describes its role within the context of cardiovascular diseases, paying particular attention to the Janus influence that endocannabinoid system modulators can have on the cardiovascular system.

6.
Int J Mol Sci ; 22(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34445659

RESUMO

Despite major progress in treating skeletal muscle disease associated with dystrophinopathies, cardiomyopathy is emerging as a major cause of death in people carrying dystrophin gene mutations that remain without a targeted cure even with new treatment directions and advances in modelling abilities. The reasons for the stunted progress in ameliorating dystrophin-associated cardiomyopathy (DAC) can be explained by the difficulties in detecting pathophysiological mechanisms which can also be efficiently targeted within the heart in the widest patient population. New perspectives are clearly required to effectively address the unanswered questions concerning the identification of authentic and effectual readouts of DAC occurrence and severity. A potential way forward to achieve further therapy breakthroughs lies in combining multiomic analysis with advanced preclinical precision models. This review presents the fundamental discoveries made using relevant models of DAC and how omics approaches have been incorporated to date.


Assuntos
Cardiomiopatias/patologia , Biologia Computacional/métodos , Distrofina/deficiência , Genoma , Proteoma/análise , Transcriptoma , Animais , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Humanos
7.
Int J Mol Sci ; 21(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977524

RESUMO

The ultimate goal of precision disease modeling is to artificially recreate the disease of affected people in a highly controllable and adaptable external environment. This field has rapidly advanced which is evident from the application of patient-specific pluripotent stem-cell-derived precision therapies in numerous clinical trials aimed at a diverse set of diseases such as macular degeneration, heart disease, spinal cord injury, graft-versus-host disease, and muscular dystrophy. Despite the existence of semi-adequate treatments for tempering skeletal muscle degeneration in dystrophic patients, nonischemic cardiomyopathy remains one of the primary causes of death. Therefore, cardiovascular cells derived from muscular dystrophy patients' induced pluripotent stem cells are well suited to mimic dystrophin-associated cardiomyopathy and hold great promise for the development of future fully effective therapies. The purpose of this article is to convey the realities of employing precision disease models of dystrophin-associated cardiomyopathy. This is achieved by discussing, as suggested in the title echoing William Shakespeare's words, the settlements (or "leagues") made by researchers to manage the constraints ("betwixt mine eye and heart") distancing them from achieving a perfect precision disease model.


Assuntos
Cardiomiopatia Dilatada , Distrofina , Células-Tronco Pluripotentes Induzidas , Distrofias Musculares , Miócitos Cardíacos , Transplante de Células-Tronco , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/terapia , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Distrofina/genética , Distrofina/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/transplante , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/terapia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...