Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 7(4): 915-932, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38633585

RESUMO

Less than 6% of rare illnesses have an appropriate treatment option. Repurposed medications for new indications are a cost-effective and time-saving strategy that results in excellent success rates, which may significantly lower the risk associated with therapeutic development for rare illnesses. It is becoming a realistic alternative to repurposing "conventional" medications to treat joint and rare diseases considering the significant failure rates, high expenses, and sluggish stride of innovative medication advancement. This is due to delisted compounds, cheaper research fees, and faster development time frames. Repurposed drug competitors have been developed using strategic decisions based on data analysis, interpretation, and investigational approaches, but technical and regulatory restrictions must also be considered. Combining experimental and computational methodologies generates innovative new medicinal applications. It is a one-of-a-kind strategy for repurposing human-safe pharmaceuticals to treat uncommon and difficult-to-treat ailments. It is a very effective method for discovering and creating novel medications. Several pharmaceutical firms have developed novel therapies by repositioning old medications. Repurposing drugs is practical, cost-effective, and speedy and generally involves lower risks when compared to developing a new drug from the beginning.

2.
Int J Pharm ; 475(1-2): 523-35, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25178828

RESUMO

Poly(ester-ether-urethane)s copolymers are a resourceful class of biopolymers for the preparation of nanocarriers for drug delivery applications. However, a simple clinical translation for this synthetic material with biological and quality features is still needed. In this view, poly(ε-caprolactone)-co-poly(ethylene glycol) copolymers were synthesized as semi-bulk pilot (Kg) scale under mild conditions in absence of catalyst, bearing functional termini such as fluorescein tag and anticancer targeting moieties. The obtained materials were processed into surface decorated paclitaxel (PTX) loaded nanoparticles (NPs). The NPs were fully characterized in vitro and in vivo biodistribution in healthy mice evidenced no sign of toxicity and lower levels of PTX in lung and spleen, compared to clinically applied PTX dosage form.


Assuntos
Antineoplásicos Fitogênicos/química , Nanopartículas/química , Paclitaxel/química , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacocinética , Células 3T3 BALB , Camundongos , Paclitaxel/administração & dosagem , Paclitaxel/farmacocinética , Poliésteres/química , Polietilenoglicóis , Poliuretanos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...