Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(9): 105143, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37562567

RESUMO

Recent genomic studies reported that 90 to 95% of human genes can undergo alternative splicing, by which multiple isoforms of proteins are synthesized. However, the functional consequences of most of the isoforms are largely unknown. Here, we report a novel alternatively spliced isoform of nonmuscle myosin IIA (NM IIA), called NM IIA2, which is generated by the inclusion of 21 amino acids near the actin-binding region (loop 2) of the head domain of heavy chains. Expression of NM IIA2 is found exclusively in the brain tissue, where it reaches a maximum level at 24 h during the circadian rhythm. The actin-dependent Mg2+-ATPase activity and in vitro motility assays reveal that NM IIA2 lacks its motor activities but localizes with actin filaments in cells. Interestingly, NM IIA2 can also make heterofilaments with NM IIA0 (noninserted isoform of NM IIA) and can retard the in vitro motility of NM IIA, when the two are mixed. Altogether, our findings provide the functional importance of a previously unknown alternatively spliced isoform, NM IIA2, and its potential physiological role in regulating NM IIA activity in the brain.


Assuntos
Processamento Alternativo , Encéfalo , Miosina não Muscular Tipo IIA , Humanos , Actinas/metabolismo , Encéfalo/metabolismo , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/metabolismo , Miosina não Muscular Tipo IIA/química , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIA/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ritmo Circadiano , ATPase de Ca(2+) e Mg(2+)/metabolismo , Especificidade de Órgãos
2.
Comput Struct Biotechnol J ; 20: 766-778, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35126886

RESUMO

The clinical manifestation of the recent pandemic COVID-19, caused by the novel SARS-CoV-2 virus, varies from mild to severe respiratory illness. Although environmental, demographic and co-morbidity factors have an impact on the severity of the disease, contribution of the mutations in each of the viral genes towards the degree of severity needs a deeper understanding for designing a better therapeutic approach against COVID-19. Open Reading Frame-3a (ORF3a) protein has been found to be mutated at several positions. In this work, we have studied the effect of one of the most frequently occurring mutants, D155Y of ORF3a protein, found in Indian COVID-19 patients. Using computational simulations we demonstrated that the substitution at 155th changed the amino acids involved in salt bridge formation, hydrogen-bond occupancy, interactome clusters, and the stability of the protein compared with the other substitutions found in Indian patients. Protein-protein docking using HADDOCK analysis revealed that substitution D155Y weakened the binding affinity of ORF3a with caveolin-1 compared with the other substitutions, suggesting its importance in the overall stability of ORF3a-caveolin-1 complex, which may modulate the virulence property of SARS-CoV-2.

3.
Int J Biochem Cell Biol ; 139: 106058, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34400319

RESUMO

Cell migration is a key step of cancer metastasis, immune-cell navigation, homing of stem cells and development. What adds complexity to it is the heterogeneity of the tissue environment that gives rise to a vast diversity of migratory mechanisms utilized by cells. A majority of cell motility mechanisms reported elsewhere largely converge in depicting the importance of the activity and complexity of actomyosin networks in the cell. In this review, we highlight the less discussed functional diversity of these actomyosin complexes and describe in detail how the major cellular actin-binding molecular motor proteins, nonmuscle myosin IIs are regulated and how they participate and mechanically reciprocate to changes in the microenvironment during cancer cell migration and tumor progression. Understanding the role of nonmuscle myosin IIs in the cancer cell is important for designing efficient therapeutic strategies to prevent cancer metastasis.


Assuntos
Mecanotransdução Celular , Actomiosina , Movimento Celular , Humanos , Miosina Tipo II
4.
Mol Biol Cell ; 30(12): 1463-1476, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30995168

RESUMO

Though many cancers are known to show up-regulation of nonmuscle myosin (NM) IIA and IIB, the mechanism by which NMIIs aid in cancer development remains unexplored. Here we demonstrate that tumor-generating, fibroblast-like cells isolated from 3-methylcholanthrene (3MC)-induced murine tumor exhibit distinct phospho-dependent localization of NMIIA and NMIIB at the perinuclear area and tip of the filopodia and affect cell migration differentially. While NMIIA-KD affects protrusion dynamics and increases cell directionality, NMIIB-KD lowers migration speed and increases filopodial branching. Strategically located NMIIs at the perinuclear area colocalize with the linker of nucleoskeleton and cytoskeleton (LINC) protein Nesprin2 and maintain the integrity of the nuclear-actin cap. Interestingly, knockdown of NMIIs results in altered expression of genes involved in epithelial-to-mesenchymal transition, angiogenesis, and cellular senescence. NMIIB-KD cells display down-regulation of Gsc and Serpinb2, which is strikingly similar to Nesprin2-KD cells as assessed by quantitative PCR analysis. Further gene network analysis predicts that NMIIA and NMIIB may act on similar pathways but through different regulators. Concomitantly, knockdown of NMIIA or NMIIB lowers the growth rate and tumor volume of 3MC-induced tumor in vivo. Altogether, these results open a new window to further investigate the effect of LINC-associated perinuclear actomyosin complex on mechanoresponsive gene expression in the growing tumor.


Assuntos
Carcinogênese/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Miosina não Muscular Tipo IIA/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Actinas/metabolismo , Animais , Proliferação de Células , Metilcolantreno , Camundongos , Quinase de Cadeia Leve de Miosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...