Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 8: 718987, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513975

RESUMO

Johne's disease (JD), also known as paratuberculosis, is a severe production-limiting disease with significant economic and welfare implications for the global cattle industry. Caused by infection with Mycobacterium avium subspecies paratuberculosis (MAP), JD manifests as chronic enteritis in infected cattle. In addition to the economic losses and animal welfare issues associated with JD, MAP has attracted public health concerns with potential association with Crohn's disease, a human inflammatory bowel disease. The lack of effective treatment options, such as a vaccine, has hampered JD control resulting in its increasing global prevalence. The disease was first reported in 1895, but in recognition of its growing economic impact, extensive recent research facilitated by a revolution in technological approaches has led to significantly enhanced understanding of the immunological, genetic, and pathogen factors influencing disease pathogenesis. This knowledge has been derived from a variety of diverse models to elucidate host-pathogen interactions including in vivo and in vitro experimental infection models, studies measuring immune parameters in naturally-infected animals, and by studies conducted at the population level to enable the estimation of genetic parameters, and the identification of genetic markers and quantitative trait loci (QTL) putatively associated with susceptibility or resistance to JD. The main objectives of this review are to summarize these recent developments from an immunogenetics perspective and attempt to extract the principal and common findings emerging from this wealth of recent information. Based on these analyses, and in light of emerging technologies such as gene-editing, we conclude by discussing potential future avenues for effectively mitigating JD in cattle.

2.
Front Vet Sci ; 8: 615029, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33614761

RESUMO

Cell envelope proteins from Mycobacterium avium subspecies paratuberculosis (MAP) that are antigenically distinct from closely related mycobacterial species are potentially useful for Johne's Disease (JD) diagnosis. We evaluated the potential of ELISAs, based on six antigenically distinct recombinant MAP cell envelope proteins (SdhA, FadE25_2, FadE3_2, Mkl, DesA2, and hypothetical protein MAP1233) as well as an extract of MAP total cell envelope proteins, to detect antibodies against MAP in the sera of infected cattle. The sensitivity (Se) and specificity (Sp) of an ELISA based on MAP total cell envelope proteins, when analyzing 153 bovine serum samples, was 75 and 96%, respectively. Analysis of the same samples, using a commercial serum ELISA resulted in a Se of 56% and Sp of 99%. Results of ELISA analysis using plates coated with recombinant cell envelope proteins ranged from a highest Se of 94% and a lowest Sp of 79% for Sdh A to a lowest Se of 67% and a highest Sp of 95% for hypothetical protein MAP1233. Using polyclonal antibodies to MAP total cell envelope proteins, immunohistochemical analysis of intestinal and lymph node tissues from JD-positive cattle detected MAP organisms whereas antibodies to recombinant proteins did not. Finally, polyclonal antibodies to MAP total cell envelope protein and to recombinant SdhA, FadE25_2, and DesA2 proteins immunomagnetically separated MAP microorganisms spiked in PBS. These results suggest that antigenically distinct MAP cell envelope proteins and antibodies to these proteins may have potential to detect MAP infection in dairy cattle.

3.
BMC Genet ; 21(1): 121, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33138773

RESUMO

BACKGROUND: The interleukin-10 receptor alpha (IL10RA) gene codes for the alpha chain of the IL-10 receptor which binds the cytokine IL-10. IL-10 is an anti-inflammatory cytokine with immunoregulatory function during the pathogenesis of many inflammatory disorders in livestock, including Johne's disease (JD). JD is a chronic enteritis in cattle caused by Mycobacterium avium subsp. paratuberculosis (MAP) and is responsible for significant economic losses to the dairy industry. Several candidate genes including IL10RA have been found to be associated with JD. The aim of this study was to better understand the functional significance of IL10RA in the context of immune stimulation with MAP cell wall lysate. RESULTS: An IL10RA knock out (KO) bovine mammary epithelial cell (MAC-T) line was generated using the CRISPR/cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9) gene editing system. These IL10RA KO cells were stimulated with the immune stimulant MAP lysate +/- IL-10, or with LPS as a positive control. In comparison to unedited cells, relative quantification of immune-related genes after stimulation revealed that knocking out IL10RA resulted in upregulation of pro-inflammatory cytokine gene expression (TNFA, IL1A, IL1B and IL6) and downregulation of suppressor of cytokine signaling 3 (SOCS3), a negative regulator of pro-inflammatory cytokine signaling. At the protein level knocking out IL10RA also resulted in upregulation of inflammatory cytokines - TNF-α and IL-6 and chemokines - IL-8, CCL2 and CCL4, relative to unedited cells. CONCLUSIONS: The findings of this study illustrate the broad and significant effects of knocking out the IL10RA gene in enhancing pro-inflammatory cytokine expression and further support the immunoregulatory role of IL10RA in eliciting an anti-inflammatory response as well as its potential functional involvement during the immune response associated with JD.


Assuntos
Sistemas CRISPR-Cas , Bovinos/genética , Células Epiteliais/microbiologia , Mycobacterium avium subsp. paratuberculosis , Receptores de Interleucina-10/genética , Animais , Linhagem Celular , Citocinas/genética , Expressão Gênica , Técnicas de Inativação de Genes , Paratuberculose/imunologia
4.
BMC Vet Res ; 16(1): 165, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32460776

RESUMO

BACKGROUND: Johne's disease (JD) is a chronic intestinal inflammatory disease caused by Mycobacterium avium subsp. paratuberculosis (MAP) infection in ruminants. Since there are currently no effective vaccine or treatment options available to control JD, genetic selection may be an alternative strategy to enhance JD resistance. Numerous Single Nucleotide Polymorphisms (SNPs) have been reported to be associated with MAP infection status based on published genome-wide association and candidate gene studies. The main objective of this study was to validate these SNPs that were previously identified to be associated with JD by testing their effect on Holstein bulls' estimated breeding values (EBVs) for milk ELISA test scores, an indirect indicator of MAP infection status in cattle. RESULTS: Three SNPs, rs41810662, rs41617133 and rs110225854, located on Bos taurus autosomes (BTA) 16, 23 and 26, respectively, were confirmed as significantly associated with Holstein bulls' EBVs for milk ELISA test score (FDR < 0.01) based on General Quasi Likelihood Scoring analysis (GQLS) analysis. Single-SNP regression analysis identified four SNPs that were associated with sire EBVs (FDR < 0.05). This includes two SNPs that were common with GQLS (rs41810662 and rs41617133), with the other two SNPs being rs110494981 and rs136182707, located on BTA9 and BTA16, respectively. CONCLUSIONS: The findings of this study validate the association of SNPs with JD MAP infection status and highlight the need to further investigate the genomic regions harboring these SNPs.


Assuntos
Doenças dos Bovinos/genética , Paratuberculose/genética , Polimorfismo de Nucleotídeo Único/genética , Animais , Cruzamento , Bovinos/genética , Doenças dos Bovinos/microbiologia , Resistência à Doença/genética , Ensaio de Imunoadsorção Enzimática/veterinária , Estudo de Associação Genômica Ampla/veterinária , Masculino , Leite/química , Mycobacterium avium subsp. paratuberculosis
5.
BMC Genomics ; 20(1): 491, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31195975

RESUMO

BACKGROUND: Mycobacterium avium subsp. paratuberculosis (MAP), the etiologic agent of Johne's disease is spread between cattle via the fecal-oral route, yet the functional changes in the salivary gland associated with infection remain uncharacterized. In this study, we hypothesized that experimental challenge with MAP would induce stable changes in gene expression patterns in the salivary gland that may shed light on the mucosal immune response as well as the regional variation in immune capacity of this extensive gland. Holstein-Friesian cattle were euthanized 33 months' post oral challenge with MAP strain CIT003 and both the parotid and mandibular salivary glands were collected from healthy control (n = 5) and MAP exposed cattle (n = 5) for histopathological and transcriptomic analysis. RESULTS: A total of 205, 21, 61, and 135 genes were significantly differentially expressed between control and MAP exposed cattle in dorsal mandibular (M1), ventral mandibular (M2), dorsal parotid (P1) and ventral parotid salivary glands (P2), respectively. Expression profiles varied between the structurally divergent parotid and mandibular gland sections which was also reflected in the enriched biological pathways identified. Changes in gene expression associated with MAP exposure were detected with significantly elevated expression of BoLA DR-ALPHA, BOLA-DRB3 and complement factors in MAP exposed cattle. In contrast, reduced expression of genes such as polymeric immunoglobin receptor (PIGR), TNFSF13, and the antimicrobial genes lactoferrin (LF) and lactoperoxidase (LPO) was detected in MAP exposed animals. CONCLUSIONS: This first analysis of the transcriptomic profile of salivary glands in cattle adds an important layer to our understanding of salivary gland immune function. Transcriptomic changes associated with MAP exposure have been identified including reduced LF and LPO. These critical antimicrobial and immunoregulatory proteins are known to be secreted into saliva and their downregulation may contribute to disease susceptibility. Future work will focus on the validation of their expression levels in saliva from additional cattle of known infection status as a potential strategy to augment disease diagnosis.


Assuntos
Perfilação da Expressão Gênica , Mycobacterium avium subsp. paratuberculosis/fisiologia , Glândulas Salivares/metabolismo , Glândulas Salivares/microbiologia , Animais , Bovinos , Ontologia Genética , Genômica , Glândulas Salivares/citologia , Alinhamento de Sequência , Análise de Sequência
6.
J Dairy Sci ; 101(8): 7280-7286, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29753465

RESUMO

Mycobacterium avium ssp. paratuberculosis (MAP) is the etiological agent of Johne's disease in cattle. Johne's disease is a disease of significant economic, animal welfare, and public health concern around the globe. Therefore, understanding the genetic architecture of resistance to MAP infection has great relevance to advance genetic selection methods to breed more resistant animals. The objectives of this study were to perform a genome-wide association study of previously analyzed 50K genotypes now imputed to a high-density single nucleotide polymorphism panel (777K), aiming to validate previously reported associations and potentially identify additional single nucleotide polymorphisms associated with antibody response to MAP infection. A principal component regression-based genome-wide association study revealed 15 putative quantitative trait loci (QTL) associated with the MAP infection phenotype (serum or milk ELISA tests) on 9 different chromosomes (Bos taurus autosomes 5, 6, 7, 10, 14, 15, 16, 20, and 21). These results validated previous findings and identified new QTL on Bos taurus autosomes 15, 16, 20, and 21. The positional candidate genes NLRP3, IFi47, TRIM41, TNFRSF18, and TNFRSF4 lying within these QTL were identified. Further functional validation of these genes is now warranted to investigate their roles in regulating the immune response and, consequently, cattle resistance to MAP infection.


Assuntos
Doenças dos Bovinos/genética , Paratuberculose/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Animais , Bovinos , Doenças dos Bovinos/microbiologia , Estudo de Associação Genômica Ampla , Mycobacterium avium subsp. paratuberculosis , Paratuberculose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...