Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2402319, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558447

RESUMO

The complex self-assembled network of neurons and synapses that comprises the biological brain enables natural information processing with remarkable efficiency. Percolating networks of nanoparticles (PNNs) are complex self-assembled nanoscale systems that have been shown to possess many promising brain-like attributes and which are therefore appealing systems for neuromorphic computation. Here experiments are performed that show that PNNs can be utilized as physical reservoirs within a nanoelectronic reservoir computing framework and demonstrate successful computation for several benchmark tasks (chaotic time series prediction, nonlinear transformation, and memory capacity). For each task, relevant literature results are compiled and it is shown that the performance of the PNNs compares favorably to that previously reported from nanoelectronic reservoirs. It is then demonstrated experimentally that PNNs can be used for spoken digit recognition with state-of-the-art accuracy. Finally, a parallel reservoir architecture is emulated, which increases the dimensionality and richness of the reservoir outputs and results in further improvements in performance across all tasks.

2.
Nano Lett ; 23(22): 10594-10599, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37955398

RESUMO

The biological brain is a highly efficient computational system in which information processing is performed via electrical spikes. Neuromorphic computing systems that work on similar principles could support the development of the next generation of artificial intelligence and, in particular, enable low-power edge computing. Percolating networks of nanoparticles (PNNs) have previously been shown to exhibit critical spiking behavior, with promise for highly efficient natural computation. Here we employ a rate coding scheme to show that PNNs can perform Boolean operations and image classification. Near perfect accuracy is achieved in both tasks by manipulating the spiking activity using certain control voltages. We demonstrate that the key to successful computation is that nanoscale tunnel gaps within the percolating networks transform input data through a powerful modulus-like nonlinearity. These results provide a basis for implementation of further computational schemes that exploit the brain-like criticality of these networks.

3.
Nanoscale Horiz ; 7(4): 437-445, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35262143

RESUMO

Physical systems that exhibit brain-like behaviour are currently under intense investigation as platforms for neuromorphic computing. We show that discontinuous metal films, comprising irregular flat islands on a substrate and formed using simple evaporation processes, exhibit correlated avalanches of electrical signals that mimic those observed in the cortex. We further demonstrate that these signals meet established criteria for criticality. We perform a detailed experimental investigation of the atomic-scale switching processes that are responsible for these signals, and show that they mimic the integrate-and-fire mechanism of biological neurons. Using numerical simulations and a simple circuit model, we show that the characteristic features of the switching events are dependent on the network state and the local position of the switch within the complex network. We conclude that discontinuous films provide an interesting potential platform for brain-inspired computing.


Assuntos
Redes Neurais de Computação , Neurônios , Encéfalo , Eletricidade , Filmes Cinematográficos
4.
ACS Appl Mater Interfaces ; 13(44): 52861-52870, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34719914

RESUMO

There is currently a great deal of interest in the use of nanoscale devices to emulate the behaviors of neurons and synapses and to facilitate brain-inspired computation. Here, it is shown that percolating networks of nanoparticles exhibit stochastic spiking behavior that is strikingly similar to that observed in biological neurons. The spiking rate can be controlled by the input stimulus, similar to "rate coding" in biology, and the distributions of times between events are log-normal, providing insights into the atomic-scale spiking mechanism. The stochasticity of the spiking behavior is then used for true random number generation, and the high quality of the generated random bit-streams is demonstrated, opening up promising routes toward integration of neuromorphic computing with secure information processing.


Assuntos
Redes Neurais de Computação , Sinapses , Encéfalo/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia
5.
Nano Lett ; 20(5): 3935-3942, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32347733

RESUMO

Self-assembled networks of nanoparticles and nanowires have recently emerged as promising systems for brain-like computation. Here, we focus on percolating networks of nanoparticles which exhibit brain-like dynamics. We use a combination of experiments and simulations to show that the brain-like network dynamics emerge from atomic-scale switching dynamics inside tunnel gaps that are distributed throughout the network. The atomic-scale dynamics emulate leaky integrate and fire (LIF) mechanisms in biological neurons, leading to the generation of critical avalanches of signals. These avalanches are quantitatively the same as those observed in cortical tissue and are signatures of the correlations that are required for computation. We show that the avalanches are associated with dynamical restructuring of the networks which self-tune to balanced states consistent with self-organized criticality. Our simulations allow visualization of the network states and detailed mechanisms of signal propagation.


Assuntos
Modelos Neurológicos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...