Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(28): 41267-41289, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847951

RESUMO

On a global scale, flooding is the most devastating natural hazard with an increasingly negative impact on humans. It is necessary to accurately detect flood-prone areas. This research introduces and evaluates the Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE) integrated with GIS in the field of flood susceptibility in comparison with two conventional multi-criteria decision analysis (MCDA) methods: analytical hierarchy process (AHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The Spercheios river basin in Greece, which is a highly susceptible area, was selected as a case study. The application of these approaches and the completion of the study requires the creation of a geospatial database consisting of eight flood conditioning factors (elevation, slope, NDVI, TWI, geology, LULC, distance to river network, rainfall) and a flood inventory of flood (564 sites) and non-flood locations for validation. The weighting of the factors is based on the AHP method. The output values were imported into GIS and interpolated to map the flood susceptibility zones. The models were evaluated by area under the curve (AUC) and the statistical metrics of accuracy, root mean squared error (RMSE), and frequency ratio (FR). The PROMETHEE model is proven to be the most efficient with AUC = 97.21%. Statistical metrics confirm the superiority of PROMETHEE with 87.54% accuracy and 0.12 RMSE. The output maps revealed that the regions most prone to flooding are arable land in lowland areas with low gradients and quaternary formations. Very high susceptible zone covers approximately 15.00-19.50% of the total area and have the greatest FR values. The susceptibility maps need to be considered in the preparation of a flood risk management plan and utilized as a tool to mitigate the adverse impacts of floods.


Assuntos
Inundações , Grécia , Sistemas de Informação Geográfica , Rios , Técnicas de Apoio para a Decisão
3.
J Environ Manage ; 193: 532-540, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28259471

RESUMO

Seawater intrusion is responsible for the progressive deterioration of groundwater quality in numerous coastal aquifers worldwide. As a consequence, seawater intrusion may constitute a serious threat to local groundwater resources, as well as to the regional economy of coastal areas. To alleviate these negative effects, a number of well-designed protective measures could be implemented. The implementation of these measures is usually associated with significant benefits for the environment and the local economy. In this perspective, the present study investigates the particular case of constructing injection barriers for controlling seawater intrusion by developing a methodological framework that combines numerical modeling with spatial and cost-benefit analyses. To this task, we introduce a novel approach, which considers the socio-economic aspects of seawater intrusion in the modeling procedure, and at the same time focuses on the spatial and temporal relationships between water salinity and farmers' income. To test the proposed methodology two alternative artificial recharge scenarios - with different volumes of water used for injection - are assessed. According to the results of this analysis, both scenarios are likely to have a positive impact on groundwater quality, as well as, a net economic benefit to local society.


Assuntos
Monitoramento Ambiental , Água do Mar , Análise Custo-Benefício , Água Subterrânea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...