Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 38(18): e9859, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39034666

RESUMO

RATIONALE: Conjugation sites are a quality attribute of conjugate vaccines. Proteolysis of bioconjugates synthesized by maleimide-thiol chemistry generates type 2 peptides with a hydrolyzed thiosuccinimide linker containing information on the conjugation sites. A mass spectrometry (MS)-cleavable linker could make the identification of conjugation sites by MS more reliable. METHODS: Four synthetic type 2 peptides with a hydrolyzed thiosuccinimide linker were analyzed by matrix-assisted laser desorption ionization (MALDI) MS/MS with and without collision gas. These peptides were also partially labeled with 18O in the linker to confirm the proposed fragmentation mechanism. A conjugate vaccine with the hydrolyzed thiosuccinimide linker was reduced and S-alkylated, digested with trypsin and analyzed by liquid chromatography-MS/MS using collision-induced dissociation (CID) and higher-energy collisional dissociation (HCD) fragmentation methods at a normalized collision energy of 30. RESULTS: A metastable fragmentation preferentially cleaves the newly formed pseudopeptide bond within the hydrolyzed thiosuccinimide linker of type 2 peptides to yield P + 71 and C + 98 ions. These ions make the assignment of conjugation sites more reliable. Partial 18O-labeling and MS/MS analysis confirmed the proposed structures. CID produces these ions as the two most intense signals more favorably than HCD. The latter also yields these ions, guarantees better sequence coverage and promotes other fragmentations in the linker. CONCLUSIONS: Hydrolyzed thiosuccinimide linker is cleavable in MALDI and electrospray ionization MS/MS analysis by a gas-phase metastable fragmentation. The resulting fragment ions (P + 71 and C + 98) make the identification of conjugation sites more reliable. These results could be extended to self-hydrolyzing maleimides, which efficiently stabilize the thiosuccinimide linker upon hydrolysis, in antibody-drug conjugates.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Succinimidas , Espectrometria de Massas em Tandem , Vacinas Conjugadas , Succinimidas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos , Vacinas Conjugadas/química , Peptídeos/química , Hidrólise
2.
Rapid Commun Mass Spectrom ; 38(2): e9660, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38124166

RESUMO

RATIONALE: The thiosuccinimide linker is widely used in the synthesis of bioconjugates. However, it is susceptible to hydrolysis and is transformed into its hydrolyzed and/or the isobaric thiazine forms, the latter of which is a fairly common product in a conjugate that contains a cysteinyl peptide. Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and matrix-assisted laser desorption/ionization-tandem mass spectrometry (MALDI-MS/MS) are useful for differentiating these isobaric species. METHODS: Four cross-linked peptides with thiosuccinimide linkers were synthesized. Analogs with linkers that were transformed into thiazine and/or the hydrolyzed thiosuccinimide linkers were then synthesized by incubating the samples at neutral or basic pH. All the cross-linked peptides were purified using RP-HPLC (reversed-phase high-performance liquid chromatography) and differentiated using MALDI-MS, MALDI-MS/MS, and ultraviolet photodissociation. RESULTS: A cysteinyl peptide-containing conjugate, the thiosuccinimide form, was largely transformed into the hydrolyzed or thiazine forms after incubation at neutral or basic pH. MALDI-MS allowed the three forms to be differentiated: the thiosuccinimide and its hydrolysis product yielded two constituent peptides after reductive cleavage between the Cys and succinimide moieties; no fragment ions were produced from the thiazine form. In addition, MALDI-MS/MS of the thiosuccinimide form yielded two pairs of complementary fragment ions via 1,4-elimination: Cys-SH and maleimide, and dehydro-alanine and thiosuccinimide, which are different from those produced via reductive cleavage in MALDI-MS. The thiazine form yielded fragment ions resulting from the cleavage of the newly formed amide bond in the linker that resulted from thiazine formation. CONCLUSIONS: The thiosuccinimide (but not thiazine) form of the cross-linked peptide yielded individual constituent peptides using MALDI-MS and MALDI-MS/MS, showing specific 1,4-elimination for the thiosuccinimide form and cleavage at the newly formed peptide bond via transcyclization for the thiazine form.


Assuntos
Espectrometria de Massas em Tandem , Tiazinas , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Peptídeos/química , Íons , Maleimidas
3.
Pathogens ; 11(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36297237

RESUMO

We aim to provide a harmonized view of the factors that affect the survival and promote the spread of R. microplus in the Neotropics, approaching its different facets of biology, ecology, distribution, and control. We review the interactions among environmental niche, landscape fragmentation, vegetal coverage (abiotic traits), and the biotic aspects of its ecology (abundance of domesticated or wild competent hosts), proposing emerging areas of research. We emphasize a holistic view integrating an economically and ecologically sustainable control of infestations and transmitted pathogens by R. microplus in the Neotropics. Examples of research link the trends of climate, the composition of the community of hosts, the landscape features, and a tailored management based on ecological grounds. Our view is that factors driving the spread of R. microplus are complex and deeply interrelated, something that has been seldom considered in control strategies. The effects of climate may affect the dynamics of wildlife or the landscape composition, promoting new patterns of seasonal activity of the tick, or its spread into currently free areas. In this paper we encourage a One Health approach highlighting the main aspects governing the components of the tick's life cycle and its interactions with livestock and wild animals.

4.
Vet Microbiol ; 152(3-4): 328-37, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21680114

RESUMO

World Health Organization has a great concern about the spreading of avian influenza virus H5N1. To counteract its massive spread, poultry vaccination is highly recommended together with biosecurity measures. In our study, a recombinant vaccine candidate based on the fusion of extracellular segments of hemagglutinin (HA) H5 of avian influenza virus and chicken CD154 (HACD) is tested with the aim of enhancing humoral and cellular immune responses in chickens. Protein expression was carried out by transducing several mammalian cell lines with recombinant adenoviral vectors. HACD purification was assessed by three distinct purification protocols: immunoaffinity chromatography by elution at acidic pH or with a chaotropic agent and size exclusion chromatography. Humoral and cellular immune responses were measured using the hemagglutination inhibition assay and the semiquantitative real time PCR, respectively. The results showed that humoral response against HACD was significantly higher than the obtained with HA alone after booster (P<0.01, P<0.05). From HACD molecules purified by distinct protocols, only the obtained by size exclusion chromatography generated hemagglutinationin-inhibition activity. IFN-γ levels indicated that cellular immune response was significantly higher with HACD, in its pure or impure form, compared to its counterpart HA (P<0.01). These data demonstrate that HACD is able to significantly enhance humoral and cellular immune responses against HA antigen, which make this fusion protein a promising subunit vaccine candidate against H5N1 virus outbreaks.


Assuntos
Ligante de CD40/metabolismo , Galinhas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/imunologia , Influenza Aviária/prevenção & controle , Animais , Anticorpos Antivirais/análise , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Testes de Inibição da Hemaglutinação , Hemaglutininas/genética , Hemaglutininas/imunologia , Humanos , Imunidade Celular , Vacinas contra Influenza/genética , Influenza Aviária/virologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...