Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pancreas ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710020

RESUMO

OBJECTIVES: To evaluate the suitability of the MIA PaCa-2 cell line for studying pancreatic cancer intratumor heterogeneity, we aim to further characterize the nature of MIA PaCa-2 cells' phenotypic, genomic, and transcriptomic heterogeneity. METHODS: MIA PaCa-2 single-cell clones were established through flow cytometry. For the phenotypic study, we quantified the cellular morphology, proliferation rate, migration potential, and drug sensitivity of the clones. The chromosome copy number and transcriptomic profiles were quantified using SNPa and RNA-seq, respectively. RESULTS: Four MIA PaCa-2 clones showed distinctive phenotypes, with differences in cellular morphology, proliferation rate, migration potential, and drug sensitivity. We also observed a degree of genomic variations between these clones in form of chromosome copy number alterations and single nucleotide variations, suggesting the genomic heterogeneity of the population, and the intrinsic genomic instability of MIA PaCa-2 cells. Lastly, transcriptomic analysis of the clones also revealed gene expression profile differences between the clones, including the uniquely regulated ITGAV, which dictates the morphology of MIA PaCa-2 clones. CONCLUSIONS: MIA PaCa-2 is comprised of cells with distinctive phenotypes, heterogeneous genomes, and differential transcriptomic profiles, suggesting its suitability as a model to study the underlying mechanisms behind pancreatic cancer heterogeneity.

2.
Genome Res ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993137

RESUMO

Single-cell DNA sequencing enables the construction of evolutionary trees that can reveal how tumors gain mutations and grow. Different whole-genome amplification procedures render genomic materials of different characteristics, often suitable for the detection of either single-nucleotide variation or copy number aberration, but not ideally for both. Consequently, this hinders the inference of a comprehensive phylogenetic tree and limits opportunities to investigate the interplay of SNVs and CNAs. Existing methods such as SCARLET and COMPASS require that the SNVs and CNAs are detected from the same sets of cells, which is technically challenging. Here we present a novel computational tool, SCsnvcna, that places SNVs on a tree inferred from CNA signals, whereas the sets of cells rendering the SNVs and CNAs are independent, offering a more practical solution in terms of the technical challenges. SCsnvcna is a Bayesian probabilistic model using both the genotype constraints on the tree and the cellular prevalence to search the optimal solution. Comprehensive simulations and comparison with seven state-of-the-art methods show that SCsnvcna is robust and accurate in a variety of circumstances. Particularly, SCsnvcna most frequently produces the lowest error rates, with ability to scale to a wide range of numerical values for leaf nodes in the tree, SNVs, and SNV cells. The application of SCsnvcna to two published colorectal cancer data sets shows highly consistent placement of SNV cells and SNVs with the original study while also supporting a refined placement of ATP7B, illustrating SCsnvcna's value in analyzing complex multitumor samples.

3.
PLoS Comput Biol ; 19(10): e1010480, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37824596

RESUMO

BACKGROUND: Many cancer genomes have been known to contain more than one subclone inside one tumor, the phenomenon of which is called intra-tumor heterogeneity (ITH). Characterizing ITH is essential in designing treatment plans, prognosis as well as the study of cancer progression. Single-cell DNA sequencing (scDNAseq) has been proven effective in deciphering ITH. Cells corresponding to each subclone are supposed to carry a unique set of mutations such as single nucleotide variations (SNV). While there have been many studies on the cancer evolutionary tree reconstruction, not many have been proposed that simply characterize the subclonality without tree reconstruction. While tree reconstruction is important in the study of cancer evolutionary history, typically they are computationally expensive in terms of running time and memory consumption due to the huge search space of the tree structure. On the other hand, subclonality characterization of single cells can be converted into a cell clustering problem, the dimension of which is much smaller, and the turnaround time is much shorter. Despite the existence of a few state-of-the-art cell clustering computational tools for scDNAseq, there lacks a comprehensive and objective comparison under different settings. RESULTS: In this paper, we evaluated six state-of-the-art cell clustering tools-SCG, BnpC, SCClone, RobustClone, SCITE and SBMClone-on simulated data sets given a variety of parameter settings and a real data set. We designed a simulator specifically for cell clustering, and compared these methods' performances in terms of their clustering accuracy, specificity and sensitivity and running time. For SBMClone, we specifically designed an ultra-low coverage large data set to evaluate its performance in the face of an extremely high missing rate. CONCLUSION: From the benchmark study, we conclude that BnpC and SCG's clustering accuracy are the highest and comparable to each other. However, BnpC is more advantageous in terms of running time when cell number is high (> 1500). It also has a higher clustering accuracy than SCG when cluster number is high (> 16). SCClone's accuracy in estimating the number of clusters is the highest. RobustClone and SCITE's clustering accuracy are the lowest for all experiments. SCITE tends to over-estimate the cluster number and has a low specificity, whereas RobustClone tends to under-estimate the cluster number and has a much lower sensitivity than other methods. SBMClone produced reasonably good clustering (V-measure > 0.9) when coverage is > = 0.03 and thus is highly recommended for ultra-low coverage large scDNAseq data sets.


Assuntos
Neoplasias , Humanos , Análise de Sequência de DNA , Neoplasias/genética , Filogenia , Análise por Conglomerados , Evolução Biológica , Algoritmos
4.
NPJ Genom Med ; 7(1): 71, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36535941

RESUMO

The establishment of patient-derived pancreatic cancer organoid culture in recent years creates an exciting opportunity for researchers to perform a wide range of in vitro studies on a model that closely recapitulates the tumor. One of the outstanding question in pancreatic cancer biology is the causes and consequences of genomic heterogeneity observed in the disease. However, to use pancreatic cancer organoids as a model to study genomic variations, we need to first understand the degree of genomic heterogeneity and its stability within organoids. Here, we used single-cell whole-genome sequencing to investigate the genomic heterogeneity of two independent pancreatic cancer organoid lines, as well as their genomic stability with extended culture. Clonal populations with similar copy number profiles were observed within the organoids, and the proportion of these clones was shifted with extended culture, suggesting the growth advantage of some clones. However, sub-clonal genomic heterogeneity was also observed within each clonal population, indicating the genomic instability of the pancreatic cancer cells themselves. Furthermore, our transcriptomic analysis also revealed a positive correlation between copy number alterations and gene expression regulation, suggesting the "gene dosage" effect of these copy number alterations that translates to gene expression regulation.

5.
Bioinformatics ; 38(10): 2912-2914, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35561189

RESUMO

SUMMARY: We report on a new single-cell DNA sequence simulator, SimSCSnTree, which generates an evolutionary tree of cells and evolves single nucleotide variants (SNVs) and copy number aberrations (CNAs) along its branches. Data generated by the simulator can be used to benchmark tools for single-cell genomic analyses, particularly in cancer where SNVs and CNAs are ubiquitous. AVAILABILITY AND IMPLEMENTATION: SimSCSnTree is now on BioConda and also is freely available for download at https://github.com/compbiofan/SimSCSnTree.git with detailed documentation.


Assuntos
Genoma , Genômica , Sequência de Bases , Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Análise de Célula Única , Software
6.
J Phys Chem Lett ; 12(10): 2691-2698, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33689357

RESUMO

Severe acute respiratory syndrome coronaviruses have unusually large RNA genomes replicated by a multiprotein complex containing an RNA-dependent RNA polymerase (RdRp). Exonuclease activity enables the RdRp complex to remove wrongly incorporated bases via proofreading, a process not utilized by other RNA viruses. However, it is unclear why the RdRp complex needs proofreading and what the associated trade-offs are. Here we investigate the interplay among the accuracy, speed, and energetic cost of proofreading in the RdRp complex using a kinetic model and bioinformatics analysis. We find that proofreading nearly optimizes the rate of functional virus production. However, we find that further optimization would lead to a significant increase in the proofreading cost. Unexpected importance of the cost minimization is further supported by other global analyses. We speculate that cost optimization could help avoid cell defense responses. Thus, proofreading is essential for the production of functional viruses, but its rate is limited by energy costs.


Assuntos
Coronavirus/genética , Modelos Teóricos , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo , Coronavirus/metabolismo , Cinética , Replicação Viral
7.
Genome Biol ; 21(1): 208, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807205

RESUMO

Copy number aberrations (CNAs), which are pathogenic copy number variations (CNVs), play an important role in the initiation and progression of cancer. Single-cell DNA-sequencing (scDNAseq) technologies produce data that is ideal for inferring CNAs. In this review, we review eight methods that have been developed for detecting CNAs in scDNAseq data, and categorize them according to the steps of a seven-step pipeline that they employ. Furthermore, we review models and methods for evolutionary analyses of CNAs from scDNAseq data and highlight advances and future research directions for computational methods for CNA detection from scDNAseq data.


Assuntos
Sequência de Bases , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Análise de Sequência de DNA/métodos , Aberrações Cromossômicas , DNA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/genética
8.
PLoS Comput Biol ; 16(7): e1008012, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32658894

RESUMO

Single-cell DNA sequencing technologies are enabling the study of mutations and their evolutionary trajectories in cancer. Somatic copy number aberrations (CNAs) have been implicated in the development and progression of various types of cancer. A wide array of methods for CNA detection has been either developed specifically for or adapted to single-cell DNA sequencing data. Understanding the strengths and limitations that are unique to each of these methods is very important for obtaining accurate copy number profiles from single-cell DNA sequencing data. We benchmarked three widely used methods-Ginkgo, HMMcopy, and CopyNumber-on simulated as well as real datasets. To facilitate this, we developed a novel simulator of single-cell genome evolution in the presence of CNAs. Furthermore, to assess performance on empirical data where the ground truth is unknown, we introduce a phylogeny-based measure for identifying potentially erroneous inferences. While single-cell DNA sequencing is very promising for elucidating and understanding CNAs, our findings show that even the best existing method does not exceed 80% accuracy. New methods that significantly improve upon the accuracy of these three methods are needed. Furthermore, with the large datasets being generated, the methods must be computationally efficient.


Assuntos
Variações do Número de Cópias de DNA , Genoma Humano , Análise de Sequência de DNA/métodos , Análise de Célula Única/métodos , Algoritmos , Aberrações Cromossômicas , Biologia Computacional , Simulação por Computador , Dosagem de Genes , Humanos , Mutação , Neoplasias/genética , Ploidias , Distribuição de Poisson , Curva ROC , Reprodutibilidade dos Testes , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...