Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 343: 123233, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159628

RESUMO

We investigated microplastic (MP) contamination in 16 commonly-consumed protein products (seafoods, terrestrial meats, and plant-based proteins) purchased in the United States (U.S.) with different levels of processing (unprocessed, minimally-processed, and highly-processed), brands (1 - 4 per product type, depending on availability) and store types (conventional supermarket and grocer featuring mostly natural/organic products). Mean (±stdev) MP contamination per serving among the products was 74 ± 220 particles (ranging from 2 ± 2 particles in chicken breast to 370 ± 580 in breaded shrimp). Concentrations (MPs/g tissue) differed between processing levels, with highly-processed products containing significantly more MPs than minimally-processed products (p = 0.0049). There were no significant differences among the same product from different brands or store types. Integrating these results with protein consumption data from the American public, we estimate that the mean annual exposure of adults to MPs in these proteins is 11,000 ± 29,000 particles, with a maximum estimated exposure of 3.8 million MPs/year. These findings further inform estimations of human exposure to MPs, particularly from proteins which are important dietary staples in the U.S. Subsequent research should investigate additional drivers of MPs in the human diet, including other understudied food groups sourced from both within and outside the U.S.


Assuntos
Microplásticos , Poluentes Químicos da Água , Adulto , Humanos , Estados Unidos , Plásticos , Poluentes Químicos da Água/análise , Dieta , Alimentos Marinhos/análise , Proteínas de Plantas , Monitoramento Ambiental/métodos
2.
Sci Adv ; 6(44)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33127684

RESUMO

Plastic waste affects environmental quality and ecosystem health. In 2010, an estimated 5 to 13 million metric tons (Mt) of plastic waste entered the ocean from both developing countries with insufficient solid waste infrastructure and high-income countries with very high waste generation. We demonstrate that, in 2016, the United States generated the largest amount of plastic waste of any country in the world (42.0 Mt). Between 0.14 and 0.41 Mt of this waste was illegally dumped in the United States, and 0.15 to 0.99 Mt was inadequately managed in countries that imported materials collected in the United States for recycling. Accounting for these contributions, the amount of plastic waste generated in the United States estimated to enter the coastal environment in 2016 was up to five times larger than that estimated for 2010, rendering the United States' contribution among the highest in the world.

3.
Science ; 369(6510): 1515-1518, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32943526

RESUMO

Plastic pollution is a planetary threat, affecting nearly every marine and freshwater ecosystem globally. In response, multilevel mitigation strategies are being adopted but with a lack of quantitative assessment of how such strategies reduce plastic emissions. We assessed the impact of three broad management strategies, plastic waste reduction, waste management, and environmental recovery, at different levels of effort to estimate plastic emissions to 2030 for 173 countries. We estimate that 19 to 23 million metric tons, or 11%, of plastic waste generated globally in 2016 entered aquatic ecosystems. Considering the ambitious commitments currently set by governments, annual emissions may reach up to 53 million metric tons per year by 2030. To reduce emissions to a level well below this prediction, extraordinary efforts to transform the global plastics economy are needed.


Assuntos
Água Doce/análise , Plásticos/análise , Água do Mar/análise , Resíduos/análise , Poluição Química da Água/análise , Monitoramento Ambiental , Gerenciamento de Resíduos
4.
Environ Pollut ; 264: 114663, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32388297

RESUMO

Pollution of coastal and marine environments by mismanaged anthropogenic debris is a global threat requiring complex, multilateral solutions and mitigation strategies. International efforts to catalogue and quantify the density, extent and nature of mismanaged waste have not yet assessed the heterogeneity of debris between nearby areas. Better understanding of how debris types and density can be used as a proxy between regions and between land and seafloor habitats at a global scale can aid in developing cost effective and representative debris monitoring systems. Using volunteer collected clean-up and survey data, we compared the proportion and density of both total debris and specific items across 19,428 coastal land and seafloor sites from International Coastal Cleanups and Dive Against Debris surveys, from 86 countries between 2011 and 2018. We show that although some items common on land are also common on the seafloor, there is an overall global mismatch between debris types and densities on land and the seafloor from nearby areas. Correlations in land/seafloor debris type/density occurred primarily for items which entangle and/or sink, including fishing line, plastic bags, glass and polyethylene terephthalate (PET) bottles. Minimal similarity between land and seafloor surveys occurs for items which float or degrade. We suggest that to accurately evaluate local debris density, land and seafloor surveys are required to gain a holistic understanding. When detailed information on debris type, relative concentration, and likely source and transport are assessed, more cost effective and efficient policy interventions can be designed and implemented from local through to global scales.


Assuntos
Plásticos , Resíduos/análise , Ecossistema , Monitoramento Ambiental , Vidro , Humanos
5.
Integr Environ Assess Manag ; 15(4): 596-606, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30900806

RESUMO

Plastic pollution in the marine environment is well documented. What remains less recognized and understood are the chemicals associated with it. Plastics enter the ocean with unreacted monomers, oligomers, and additives, which can leach over time. Moreover, plastics sorb organic and inorganic chemicals from surrounding seawater, for example, polychlorinated biphenyls (PCBs) and metals. Thus, interception and cleanup of plastics reduces the amount of chemical contaminants entering or reentering the oceans and removes those already present. Here, we estimate 1) the mass of selected chemical additives entering the global oceans with common plastic debris items, and 2) the mass of sorbed chemicals (using PCBs as a case study) associated with microplastics in selected locations. We estimate the mass of additives that entered the oceans in 2015 as constituents of 7 common plastic debris items (bottles, bottle caps, expanded polystyrene (EPS) containers, cutlery, grocery bags, food wrappers, and straws or stirrers). We calculate that approximately 190 tonnes (t) of 20 chemical additives entered the oceans with these items in 2015. We also estimate the mass of PCBs associated with microplastics in 2 coastal (Hong Kong and Hawaii) and 2 open ocean (North Pacific and South Atlantic gyres) locations, as comparative case studies. We find that the mass of chemicals is related to the mass of plastics in a location, with greater mass of PCBs closer to the source (i.e., land), where there is more plastic per unit area compared to the open ocean. We estimate approximately 85 000 times more PCBs associated with plastics in an average 4.5-km stretch of beach in Hong Kong than from the same size transect in the North Pacific gyre. In conclusion, continuing efforts for plastic interception and cleanup on shorelines effectively reduces the amount of plastic-related chemicals entering and/or reentering the marine environment. Integr Environ Assess Manag 2019;15:596-606. © 2019 SETAC.


Assuntos
Monitoramento Ambiental/métodos , Recuperação e Remediação Ambiental , Plásticos/análise , Bifenilos Policlorados/análise , Poluentes Químicos da Água/análise , Oceano Atlântico , Havaí , Hong Kong , Oceanos e Mares , Oceano Pacífico , Poluição Química da Água/análise
6.
Mar Pollut Bull ; 139: 40-45, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30686443

RESUMO

Microfibers are a common type of microplastic. One known source of microfibers to the environment is domestic laundering, which can release thousands of fibers into washing machine effluent with every wash. Here, we adapted existing methods to measure the length, count and weight of microfibers in laundry effluent. We used this method to test the efficacy of two technologies marketed to reduce microfiber emissions: the Cora Ball and Lint LUV-R filter. Both technologies significantly reduced the numbers of microfibers from fleece blankets in washing effluent. The Lint LUV-R captured an average of 87% of microfibers in the wash by count, compared to the Cora Ball which captured 26% by count. The Lint LUV-R also significantly reduced the total weight and average length of fibers in effluent. While further research is needed to understand other sources of microfiber emissions, these available technologies could be adopted to reduce emissions from laundering textiles.


Assuntos
Lavanderia/métodos , Plásticos/análise , Têxteis/análise , Águas Residuárias/química , Poluição da Água/prevenção & controle , Filtração , Lavanderia/normas , Modelos Teóricos
7.
Environ Sci Technol ; 49(12): 7082-94, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-25938368

RESUMO

Floating and stranded marine debris is widespread. Increasing sea levels and altered rainfall, solar radiation, wind speed, waves, and oceanic currents associated with climatic change are likely to transfer more debris from coastal cities into marine and coastal habitats. Marine debris causes economic and ecological impacts, but understanding the scope of these requires quantitative information on spatial patterns and trends in the amounts and types of debris at a global scale. There are very few large-scale programs to measure debris, but many peer-reviewed and published scientific studies of marine debris describe local patterns. Unfortunately, methods of defining debris, sampling, and interpreting patterns in space or time vary considerably among studies, yet if data could be synthesized across studies, a global picture of the problem may be avaliable. We analyzed 104 published scientific papers on marine debris in order to determine how to evaluate this. Although many studies were well designed to answer specific questions, definitions of what constitutes marine debris, the methods used to measure, and the scale of the scope of the studies means that no general picture can emerge from this wealth of data. These problems are detailed to guide future studies and guidelines provided to enable the collection of more comparable data to better manage this growing problem.


Assuntos
Água do Mar , Movimentos da Água , Poluentes da Água/análise , Monitoramento Ambiental , Internacionalidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...