Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980188

RESUMO

Carbon electrodes typically display sluggish electron transfer kinetics due to the adsorption of adventitious molecules that effectively insulate the surface. Here, we describe a method for rendering graphitic carbon electrodes permanently hydrophilic by functionalization with 4-(diazonium)benzenesulfonic acid. In aqueous electrolytes, these hydrophilic carbon electrodes exhibit metal-like specific capacitance (∼40 µF/cm2) as measured by cyclic voltammetry, suggesting a change in the double-layer structure at the carbon surface. Additionally, the modified electrodes show fast charge transfer kinetics to outer-sphere one-electron redox couples such as ferro-/ferricyanide as well as improved electron transfer kinetics in alkaline aqueous redox flow batteries.

2.
J Am Chem Soc ; 146(26): 18117-18127, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38900942

RESUMO

The dynamics of photoinduced electron transfer were measured at dye-sensitized photoanodes in aqueous (acetate buffer), nonaqueous (acetonitrile), and mixed solvent electrolytes by nanosecond transient absorption spectroscopy (TAS) and ultrafast optical-pump terahertz-probe spectroscopy (OPTP). Higher injection efficiencies were found in mixed solvent electrolytes for dye-sensitized SnO2/TiO2 core/shell electrodes, whereas the injection efficiency of dye-sensitized TiO2 electrodes decreased with the increasing acetonitrile concentration. The trend in injection efficiency for the TiO2 electrodes was consistent with the solvent-dependent trend in the semiconductor flat band potential. Photoinduced electron injection in core/shell electrodes has been understood as a two-step process involving ultrafast electron trapping in the TiO2 shell followed by slower electron transfer to the SnO2 core. The driving force for shell-to-core electron transfer increases as the flat band potential of TiO2 shifts negatively with increasing concentrations of acetonitrile. In acetonitrile-rich electrolytes, electron injection is suppressed due to the very negative flat band potential of the TiO2 shell. Interestingly, a net negative photoconductivity in the SnO2 core is observed in mixed solvent electrolytes by OPTP. We hypothesize that an electric field is formed across the TiO2 shell from the oxidized dye molecules after injection. Conduction band electrons in SnO2 are trapped at the core/shell interface by the electric field, resulting in a negative photoconductivity transient. The overall electron injection efficiency of the dye-sensitized SnO2/TiO2 core/shell photoanodes is optimized in mixed solvents. The ultrafast transient conductivity data illustrate the crucial role of the electrolyte in regulating the driving forces for electron injection and charge separation at dye-sensitized semiconductor interfaces.

3.
ChemSusChem ; : e202400641, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717790

RESUMO

Understanding ionic conduction in layered double hydroxides (LDHs) is a crucial step towards utilizing them as solid, hydroxide ion-conducting electrolytes in energy conversion applications. We selectively modified the interlayer and external surfaces of MgAl LDHs with tris(hydroxymethyl)aminomethane (TRIS) ligands. By adjusting the concentration of the TRIS surface modifier, the LDH basal plane surfaces could be functionalized everywhere (internally and externally) or only externally. External modification resulted in loss of OH-conductivity compared to pristine LDHs, confirming that external platelet surfaces are the primary ion conduction pathway.

4.
J Am Chem Soc ; 146(3): 2267-2274, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38207288

RESUMO

Efficient and stable photoelectrochemical reduction of CO2 into highly reduced liquid fuels remains a formidable challenge, which requires an innovative semiconductor/catalyst interface to tackle. In this study, we introduce a strategy involving the fabrication of a silicon micropillar array structure coated with a superhydrophobic fluorinated carbon layer for the photoelectrochemical conversion of CO2 into methanol. The pillars increase the electrode surface area, improve catalyst loading and adhesion without compromising light absorption, and help confine gaseous intermediates near the catalyst surface. The superhydrophobic coating passivates parasitic side reactions and further enhances local accumulation of reaction intermediates. Upon one-electron reduction of the molecular catalyst, the semiconductor-catalyst interface changes from adaptive to buried junctions, providing a sufficient thermodynamic driving force for CO2 reduction. These structures together create a unique microenvironment for effective reduction of CO2 to methanol, leading to a remarkable Faradaic efficiency reaching 20% together with a partial current density of 3.4 mA cm-2, surpassing the previous record based on planar silicon photoelectrodes by a notable factor of 17. This work demonstrates a new pathway for enhancing photoelectrocatalytic CO2 reduction through meticulous interface and microenvironment tailoring and sets a benchmark for both Faradaic efficiency and current density in solar liquid fuel production.

5.
ACS Nanosci Au ; 3(6): 424-440, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38144701

RESUMO

Micro- and nanoscopic particles that swim autonomously and self-assemble under the influence of chemical fuels and external fields show promise for realizing systems capable of carrying out large-scale, predetermined tasks. Different behaviors can be realized by tuning swimmer interactions at the individual level in a manner analogous to the emergent collective behavior of bacteria and mammalian cells. However, the limited toolbox of weak forces with which to drive these systems has made it difficult to achieve useful collective functions. Here, we review recent research on driving swimming and particle self-organization using acoustic fields, which offers capabilities complementary to those of the other methods used to power microswimmers. With either chemical or acoustic propulsion (or a combination of the two), understanding individual swimming mechanisms and the forces that arise between individual particles is a prerequisite to harnessing their interactions to realize collective phenomena and macroscopic functionality. We discuss here the ingredients necessary to drive the motion of microscopic particles using ultrasound, the theory that describes that behavior, and the gaps in our understanding. We then cover the combination of acoustically powered systems with other cross-compatible driving forces and the use of ultrasound in generating collective behavior. Finally, we highlight the demonstrated applications of acoustically powered microswimmers, and we offer a perspective on the state of the field, open questions, and opportunities. We hope that this review will serve as a guide to students beginning their work in this area and motivate others to consider research in microswimmers and acoustic fields.

6.
ACS Omega ; 8(44): 41969-41976, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37970010

RESUMO

MXenes are of much interest because of their electrochemical, electronic, and surface chemical properties that arise from their structure and stoichiometry. The integrity and the nature of the terminal groups on the basal planes of MXene sheets depend strongly on the method used to etch the parent MAX (M = transition metal, A = Al, X = C, N, B) compound. Aluminum removal typically involves a high concentration of aqueous HF, HCl/LiF mixtures, or fluoride solutions of strong acids. HF etching is problematic because it leaves insoluble AlF3 in the product, degrades the crystallinity of the nanosheets, and results in the termination of the basal planes with F, O, or OH groups. Here, we demonstrate the use of HF at a low concentration in tandem with a chelating agent, N,N'-dihydroxyoctanediamide (suberohydroxamic acid), to selectively etch the archetypical MAX compound Ti3AlC2 at room temperature. X-ray absorption spectroscopy (XAS) of the etched materials shows that the carbide nature of bonding in the parent MAX structure is retained in the MXene layers. The stability of the MXene in aqueous suspensions is also significantly improved relative to MXene products made by etching in concentrated HF solutions.

7.
J Appl Crystallogr ; 56(Pt 4): 1221-1228, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37555210

RESUMO

This article demonstrates spatial mapping of the local and nanoscale structure of thin film objects using spatially resolved pair distribution function (PDF) analysis of synchrotron X-ray diffraction data. This is exemplified in a lab-on-chip combinatorial array of sample spots containing catalytically interesting nanoparticles deposited from liquid precursors using an ink-jet liquid-handling system. A software implementation is presented of the whole protocol, including an approach for automated data acquisition and analysis using the atomic PDF method. The protocol software can handle semi-automated data reduction, normalization and modeling, with user-defined recipes generating a comprehensive collection of metadata and analysis results. By slicing the collection using included functions, it is possible to build images of different contrast features chosen by the user, giving insights into different aspects of the local structure.

8.
J Am Chem Soc ; 145(26): 14260-14266, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37347164

RESUMO

Photoelectrodes consisting of metal-insulator-semiconductor (MIS) junctions are a promising candidate architecture for water splitting and for the CO2 reduction reaction (CO2RR). The photovoltage is an essential indicator of the driving force that a photoelectrode can provide for surface catalytic reactions. However, for MIS photoelectrodes that contain metal nanoparticles, direct photovoltage measurements at the metal sites under operational conditions remain challenging. Herein, we report a new in situ spectroscopic approach to probe the quasi-Fermi level of metal catalyst sites in heterogeneous MIS photoelectrodes via surface-enhanced Raman spectroscopy. Using a CO2RR photocathode, nanoporous p-type Si modified with Ag nanoparticles, as a prototype, we demonstrate a selective probe of the photovoltage of ∼0.59 V generated at the Si/SiOx/Ag junctions. Because it can directly probe the photovoltage of MIS heterogeneous junctions, this vibrational Stark probing approach paves the way for the thermodynamic evaluation of MIS photoelectrodes with varied architectural designs.

9.
ACS Appl Mater Interfaces ; 15(27): 33028-33036, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37368963

RESUMO

The structural characteristics of supports, such as surface area and type of porosity, affect the deposition of electrocatalysts and greatly influence their electrochemical performance in fuel cells. In this work, we use a series of high surface area hierarchical porous carbons (HPCs) with defined mesoporosity as model supports to study the deposition mechanism of Pt nanoparticles. The resulting electrocatalysts are characterized by several analytical techniques, and their electrochemical performance is compared to a state-of-the-art, commercial Pt/C system. Despite the similar chemical composition and surface area of the supports, as well as similar amounts of Pt precursor used, the size of the deposited Pt nanoparticles varies, and it is inversely proportional to the mesopore size of the system. In addition, we show that an increase in the size of the catalyst particles can increase the specific activity of the oxygen reduction reaction. We also report on our efforts to improve the overall performance of the above electrocatalyst systems and show that increasing the electronic conductivity of the carbon support by the addition of highly conductive graphene sheets improves the overall performance of an alkaline fuel cell.

10.
Inorg Chem ; 62(23): 9146-9157, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37228171

RESUMO

A series of dinuclear molecular copper complexes were prepared and used to model the binding and Lewis acid stabilization of CO in heterogeneous copper CO2 reduction electrocatalysts. Experimental studies (including measurement of rate and equilibrium constants) and electronic structure calculations suggest that the key kinetic barrier for CO binding may be a σ-interaction between CuI and the incoming CO ligand. The rate of CO coordination can be increased upon the addition of Lewis acids or electron-withdrawing substituents on the ligand backbone. Conversely, Keq for CO coordination can be increased by adding electron density to the metal centers of the compound, consistent with stronger π-backbonding. Finally, the electrochemically measured kinetic results were mapped onto an electrochemical zone diagram to illustrate how these system changes enabled access to each zone.

11.
ACS Nano ; 17(8): 7911-7919, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37022928

RESUMO

The process of dynamic self-organization of small building blocks is fundamental to the emergent function of living systems and is characteristic of their out-of-equilibrium homeostasis. The ability to control the interactions of synthetic particles in large groups could lead to the realization of analogous macroscopic robotic systems with microscopic complexity. Rotationally induced self-organization has been observed in biological systems and modeled theoretically, but studies of fast, autonomously moving synthetic rotors remain rare. Here, we report switchable, out-of-equilibrium hydrodynamic assembly and phase separation in suspensions of acoustically powered chiral microspinners. Semiquantitative modeling suggests that three-dimensionally (3D) complex spinners interact through viscous and weakly inertial (streaming) flows. The interactions between spinners were studied over a range of densities to construct a phase diagram, which included gaseous dimer pairing at low density, collective rotation and multiphase separation at intermediate densities, and ultimately jamming at high density. The 3D chirality of the spinners leads to self-organization in parallel planes, forming a three-dimensionally hierarchical system that goes beyond the 2D systems that have so far been modeled computationally. Dense mixtures of spinners and passive tracer particles also show active-passive phase separation. These observations are consistent with recent theoretical predictions of the hydrodynamic coupling between rotlets generated by autonomous spinners and provide an exciting experimental window to the study of colloidal active matter and microrobotic systems.

12.
Nat Nanotechnol ; 18(3): 227-232, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36690739

RESUMO

Topological magnetic monopoles (TMMs), also known as hedgehogs or Bloch points, are three-dimensional (3D) non-local spin textures that are robust to thermal and quantum fluctuations due to the topology protection1-4. Although TMMs have been observed in skyrmion lattices1,5, spinor Bose-Einstein condensates6,7, chiral magnets8, vortex rings2,9 and vortex cores10, it has been difficult to directly measure the 3D magnetization vector field of TMMs and probe their interactions at the nanoscale. Here we report the creation of 138 stable TMMs at the specific sites of a ferromagnetic meta-lattice at room temperature. We further develop soft X-ray vector ptycho-tomography to determine the magnetization vector and emergent magnetic field of the TMMs with a 3D spatial resolution of 10 nm. This spatial resolution is comparable to the magnetic exchange length of transition metals11, enabling us to probe monopole-monopole interactions. We find that the TMM and anti-TMM pairs are separated by 18.3 ± 1.6 nm, while the TMM and TMM, and anti-TMM and anti-TMM pairs are stabilized at comparatively longer distances of 36.1 ± 2.4 nm and 43.1 ± 2.0 nm, respectively. We also observe virtual TMMs created by magnetic voids in the meta-lattice. This work demonstrates that ferromagnetic meta-lattices could be used as a platform to create and investigate the interactions and dynamics of TMMs. Furthermore, we expect that soft X-ray vector ptycho-tomography can be broadly applied to quantitatively image 3D vector fields in magnetic and anisotropic materials at the nanoscale.

13.
Angew Chem Int Ed Engl ; 62(4): e202215213, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36445830

RESUMO

We report a precious-metal-free molecular catalyst-based photocathode that is active for aqueous CO2 reduction to CO and methanol. The photoelectrode is composed of cobalt phthalocyanine molecules anchored on graphene oxide which is integrated via a (3-aminopropyl)triethoxysilane linker to p-type silicon protected by a thin film of titanium dioxide. The photocathode reduces CO2 to CO with high selectivity at potentials as mild as 0 V versus the reversible hydrogen electrode (vs RHE). Methanol production is observed at an onset potential of -0.36 V vs RHE, and reaches a peak turnover frequency of 0.18 s-1 . To date, this is the only molecular catalyst-based photoelectrode that is active for the six-electron reduction of CO2 to methanol. This work puts forth a strategy for interfacing molecular catalysts to p-type semiconductors and demonstrates state-of-the-art performance for photoelectrochemical CO2 reduction to CO and methanol.

14.
Inorg Chem ; 62(3): 1113-1121, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36351259

RESUMO

Atomically dispersed organometallic clusters can provide well-defined nuclearity of active sites for both fundamental studies as well as new regimes of activity and selectivity in chemical transformations. More recently, dinuclear clusters adsorbed onto solid surfaces have shown novel catalytic properties resulting from the synergistic effect of two metal centers to anchor different reactant species. Difficulty in synthesizing, stabilizing, and characterizing isolated atoms and clusters without agglomeration challenges allocating catalytic performance to atomic structure. Here, we explore the stability of dinuclear rhodium and iridium clusters adsorbed onto layered titanate and niobate supports using molecular precursors. Both systems maintain their nuclearity when characterized using aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Statistical analysis of HAADF-STEM images revealed that rhodium and iridium dimers had mean cluster-to-cluster distances very similar to what is expected from a random distribution of atoms over a large area, indicating that they are dispersed without aggregation. The stability of dinuclear rhodium clusters supported on titanate nanosheets was also investigated by X-ray absorption fine structure (EXAFS), DRIFTS, and first-principles calculations. Both X-ray absorption spectroscopy and HAADF-STEM simulations, guided by density functional theory (DFT)-optimized structure models, suggested that rhodium dimers adsorb onto the nanosheets in an end-on binding mode that is stable up to 100 °C under reducing conditions. This study highlights that crystalline nanosheets derived from layered metal oxides can be used as model supports to selectively stabilize dinuclear clusters, which could have implications for heterogeneous catalysis.


Assuntos
Ródio , Ródio/química , Irídio/química , Óxidos/química , Catálise
15.
Inorg Chem ; 61(37): 14824-14832, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36074721

RESUMO

Basal plane-functionalized NbS2 nanosheets were obtained using in situ photolysis to generate the coordinatively unsaturated organometallic fragment cyclopentadienyl manganese(I) dicarbonyl (CpMn(CO)2). Under UV irradiation, a labile carbonyl ligand dissociates from the tricarbonyl complex, creating an open coordination site for bonding between the Mn atom and the electron-rich sulfur atoms on the surface of the NbS2 nanosheets. In contrast, no reaction is observed with 2H-MoS2 nanosheets under the same reaction conditions. This difference in reactivity is consistent with the electronic structure calculations, which indicate stronger bonding of the organometallic fragment to electron-poor, metallic NbS2 than to semiconducting, electron-rich MoS2. X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FTIR) spectroscopy, and powder X-ray diffraction (PXRD) were used to characterize the bonding between Mn and S atoms on the surface-functionalized nanosheets.

16.
ACS Appl Mater Interfaces ; 14(36): 41316-41327, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36054507

RESUMO

Semiconductor metalattices consisting of a linked network of three-dimensional nanostructures with periodicities on a length scale <100 nm can enable tailored functional properties due to their complex nanostructuring. For example, by controlling both the porosity and pore size, thermal transport in these phononic metalattices can be tuned, making them promising candidates for efficient thermoelectrics or thermal rectifiers. Thus, the ability to characterize the porosity, and other physical properties, of metalattices is critical but challenging, due to their nanoscale structure and thickness. To date, only metalattices with high porosities, close to the close-packing fraction of hard spheres, have been studied experimentally. Here, we characterize the porosity, thickness, and elastic properties of a low-porosity, empty-pore silicon metalattice film (∼500 nm thickness) with periodic spherical pores (∼tens of nanometers), for the first time. We use laser-driven nanoscale surface acoustic waves probed by extreme ultraviolet scatterometry to nondestructively measure the acoustic dispersion in these thin silicon metalattice layers. By comparing the data to finite element models of the metalattice sample, we can extract Young's modulus and porosity. Moreover, by controlling the acoustic wave penetration depth, we can also determine the metalattice layer thickness and verify the substrate properties. Additionally, we utilize electron tomography images of the metalattice to verify the geometry and validate the porosity extracted from scatterometry. These advanced characterization techniques are critical for informed and iterative fabrication of energy-efficient devices based on nanostructured metamaterials.

17.
Sci Adv ; 8(32): eadc9115, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35947708

RESUMO

While dye-sensitized metal oxides are good candidates as H2 evolution photocatalysts for solar-driven Z-scheme water splitting, their solar-to-hydrogen (STH) energy conversion efficiencies remain low because of uncontrolled charge recombination reactions. Here, we show that modification of Ru dye-sensitized, Pt-intercalated HCa2Nb3O10 nanosheets (Ru/Pt/HCa2Nb3O10) with both amorphous Al2O3 and poly(styrenesulfonate) (PSS) improves the STH efficiency of Z-scheme overall water splitting by a factor of ~100, when the nanosheets are used in combination with a WO3-based O2 evolution photocatalyst and an I3-/I- redox mediator, relative to an analogous system that uses unmodified Ru/Pt/HCa2Nb3O10. By using the optimized photocatalyst, PSS/Ru/Al2O3/Pt/HCa2Nb3O10, a maximum STH of 0.12% and an apparent quantum yield of 4.1% at 420 nm were obtained, by far the highest among dye-sensitized water splitting systems and comparable to conventional semiconductor-based suspended particulate photocatalyst systems.

18.
ACS Appl Mater Interfaces ; 14(34): 39515-39523, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35984896

RESUMO

Self-powered, biocompatible pumps in the nanometer to micron length scale have the potential to enable technology in several fields, including chemical analysis and medical diagnostics. Chemically powered, catalytic micropumps have been developed but are not able to function well in biocompatible environments due to their intolerance of salt solutions and the use of toxic fuels. In contrast, enzymatically powered catalytic pumps offer good biocompatibility, selectivity, and scalability, but their performance at length scales below a few millimeters, which is important to many of their possible applications, has not been well tested. Here, urease-based enzyme pumps of millimeter and micrometer dimensions were fabricated and studied. The scaling of the pumping velocity was measured experimentally and simulated by numerical modeling. Pumping speeds were analyzed accurately by eliminating Brownian noise from the data using enzyme patches between 5 mm and 350 µm in size. Pumping speeds of microns per second could be achieved with urease pumps and were fastest when the channel height exceeded the width of the catalytic pump patch. In all cases, pumping was weak when the dimensions of the patch were 100 µm or less. Experimental and simulation results were consistent with a density-driven pumping mechanism at all sizes studied and served as a framework for the in silico study of more complex two-dimensional (2D) and three-dimensional (3D) geometries. Attempts to create directional flow by juxtaposing inward and outward pumps were unsuccessful because of the symmetry of convection rolls produced by millimeter-size pump patches and the slow speeds of smaller pumps. However, simulations of a corrugated ratchet structure showed that directional pumping could be achieved with pump patches in the millimeter size range.


Assuntos
Urease , Catálise , Simulação por Computador , Urease/química
19.
Chem Rev ; 122(6): 6117-6321, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35133808

RESUMO

Hydrogen energy-based electrochemical energy conversion technologies offer the promise of enabling a transition of the global energy landscape from fossil fuels to renewable energy. Here, we present a comprehensive review of the fundamentals of electrocatalysis in alkaline media and applications in alkaline-based energy technologies, particularly alkaline fuel cells and water electrolyzers. Anion exchange (alkaline) membrane fuel cells (AEMFCs) enable the use of nonprecious electrocatalysts for the sluggish oxygen reduction reaction (ORR), relative to proton exchange membrane fuel cells (PEMFCs), which require Pt-based electrocatalysts. However, the hydrogen oxidation reaction (HOR) kinetics is significantly slower in alkaline media than in acidic media. Understanding these phenomena requires applying theoretical and experimental methods to unravel molecular-level thermodynamics and kinetics of hydrogen and oxygen electrocatalysis and, particularly, the proton-coupled electron transfer (PCET) process that takes place in a proton-deficient alkaline media. Extensive electrochemical and spectroscopic studies, on single-crystal Pt and metal oxides, have contributed to the development of activity descriptors, as well as the identification of the nature of active sites, and the rate-determining steps of the HOR and ORR. Among these, the structure and reactivity of interfacial water serve as key potential and pH-dependent kinetic factors that are helping elucidate the origins of the HOR and ORR activity differences in acids and bases. Additionally, deliberately modulating and controlling catalyst-support interactions have provided valuable insights for enhancing catalyst accessibility and durability during operation. The design and synthesis of highly conductive and durable alkaline membranes/ionomers have enabled AEMFCs to reach initial performance metrics equal to or higher than those of PEMFCs. We emphasize the importance of using membrane electrode assemblies (MEAs) to integrate the often separately pursued/optimized electrocatalyst/support and membranes/ionomer components. Operando/in situ methods, at multiscales, and ab initio simulations provide a mechanistic understanding of electron, ion, and mass transport at catalyst/ionomer/membrane interfaces and the necessary guidance to achieve fuel cell operation in air over thousands of hours. We hope that this Review will serve as a roadmap for advancing the scientific understanding of the fundamental factors governing electrochemical energy conversion in alkaline media with the ultimate goal of achieving ultralow Pt or precious-metal-free high-performance and durable alkaline fuel cells and related technologies.


Assuntos
Fontes de Energia Elétrica , Prótons , Hidrogênio/química , Oxigênio/química , Água
20.
ACS Appl Mater Interfaces ; 14(7): 9398-9407, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35134294

RESUMO

Colloidal crystals made from sub-100 nm silica nanoparticles have provided a versatile platform for the template-assisted synthesis of three-dimensionally interconnected semiconducting, metallic, and magnetic replicas. However, the detailed structure of these materials has not yet been characterized. In this study, we investigated the structures of colloidal crystalline films and germanium replicas by scanning electron microscopy and small angle X-ray scattering. The structures of colloidal crystals made by evaporative assembly depends on the size of l-arginine-capped silica nanoparticles. Particles smaller than ∼31 nm diameter assemble into non-close-packed arrangements (bcc) whereas particles larger than 31 nm assemble into random close-packed structures with disordered hexagonal phase. Polycrystalline films of these materials retain their structures and long-range order upon infiltration at high temperature and pressure, and the structure is preserved in Ge replicas. The shear force during deposition and dispersity of silica nanoparticles contributes to the size-based variation in the structure and to the size of crystal domains in the colloidal crystal films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...