Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(33): 12329-12338, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37548594

RESUMO

Nontarget analysis by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) is now widely used to detect pollutants in the environment. Shifting away from targeted methods has led to detection of previously unseen chemicals, and assessing the risk posed by these newly detected chemicals is an important challenge. Assessing exposure and toxicity of chemicals detected with nontarget HRMS is highly dependent on the knowledge of the structure of the chemical. However, the majority of features detected in nontarget screening remain unidentified and therefore the risk assessment with conventional tools is hampered. Here, we developed MS2Quant, a machine learning model that enables prediction of concentration from fragmentation (MS2) spectra of detected, but unidentified chemicals. MS2Quant is an xgbTree algorithm-based regression model developed using ionization efficiency data for 1191 unique chemicals that spans 8 orders of magnitude. The ionization efficiency values are predicted from structural fingerprints that can be computed from the SMILES notation of the identified chemicals or from MS2 spectra of unidentified chemicals using SIRIUS+CSI:FingerID software. The root mean square errors of the training and test sets were 0.55 (3.5×) and 0.80 (6.3×) log-units, respectively. In comparison, ionization efficiency prediction approaches that depend on assigning an unequivocal structure typically yield errors from 2× to 6×. The MS2Quant quantification model was validated on a set of 39 environmental pollutants and resulted in a mean prediction error of 7.4×, a geometric mean of 4.5×, and a median of 4.0×. For comparison, a model based on PaDEL descriptors that depends on unequivocal structural assignment was developed using the same dataset. The latter approach yielded a comparable mean prediction error of 9.5×, a geometric mean of 5.6×, and a median of 5.2× on the validation set chemicals when the top structural assignment was used as input. This confirms that MS2Quant enables to extract exposure information for unidentified chemicals which, although detected, have thus far been disregarded due to lack of accurate tools for quantification. The MS2Quant model is available as an R-package in GitHub for improving discovery and monitoring of potentially hazardous environmental pollutants with nontarget screening.


Assuntos
Poluentes Ambientais , Espectrometria de Massas , Cromatografia Líquida , Software , Algoritmos
2.
J Chromatogr A ; 1666: 462867, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35139450

RESUMO

Structural elucidation of compounds detected with liquid chromatography coupled to high resolution mass spectrometry is a challenging and time-consuming step in the workflow of non-targeted analysis and often requires manual validation of the results. Retention time, alongside exact mass, isotope pattern, fragmentation spectra, and collision cross-section, is valuable information for ruling out unlikely structures and increasing the confidence in others. Different approaches to predict retention times have been used previously for reversed phase chromatography and hydrophilic interaction liquid chromatography (HILIC), but application is limited to a small set of mobile phases and gradient profiles. Here, we expand the toolbox available for retention time predictions by developing a random forest regression model for predicting retention times for four column types and twenty mobile phase systems. MultiConditionRT was built using a dataset containing 78 compounds analyzed with C18 reversed phase, mixed mode, HILIC, and biphenyl columns. In addition, different eluent compositions were used: both methanol and acetonitrile were combined with different aqueous phases with pH from 2.1 to 10.0 (formic acid, acetic acid, trifluoroacetic acid, formate, acetate, bicarbonate, and ammonia). The root mean square error (RMSE) of the test set predictions was 1.55 min for C18 reversed phase, 1.79 min for mixed-mode, 1.93 min for HILIC, and 1.56 min for biphenyl column. Additionally, MultiConditionRT can be applied to different gradient profiles with a general additive model-based calibration approach. The approach of MultiConditionRT was validated externally and internally with 356 and 151 compounds respectively, yielding an RMSE of 2.68 and 2.32 min. 324 and 84 of these compounds were not in the dataset used in the model development.


Assuntos
Cromatografia de Fase Reversa , Metanol , Cromatografia Líquida/métodos , Cromatografia de Fase Reversa/métodos , Interações Hidrofóbicas e Hidrofílicas , Indicadores e Reagentes , Metanol/química
3.
Molecules ; 26(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207787

RESUMO

Non-targeted screening (NTS) with reversed phase liquid chromatography electrospray ionization high resolution mass spectrometry (LC/ESI/HRMS) is increasingly employed as an alternative to targeted analysis; however, it is not possible to quantify all compounds found in a sample with analytical standards. As an alternative, semi-quantification strategies are, or at least should be, used to estimate the concentrations of the unknown compounds before final decision making. All steps in the analytical chain, from sample preparation to ionization conditions and data processing can influence the signals obtained, and thus the estimated concentrations. Therefore, each step needs to be considered carefully. Generally, less is more when it comes to choosing sample preparation as well as chromatographic and ionization conditions in NTS. By combining the positive and negative ionization mode, the performance of NTS can be improved, since different compounds ionize better in one or the other mode. Furthermore, NTS gives opportunities for retrospective analysis. In this tutorial, strategies for semi-quantification are described, sources potentially decreasing the signals are identified and possibilities to improve NTS are discussed. Additionally, examples of retrospective analysis are presented. Finally, we present a checklist for carrying out semi-quantitative NTS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...