Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(9)2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37174671

RESUMO

Gray mold caused by Botrytis cinerea causes significant losses in tomato crops. B. cinerea infection may be halted by volatile organic compounds (VOCs), which may exhibit fungistatic activity or enhance the defense responses of plants against the pathogen. The enhanced VOC generation was observed in tomato (Solanum lycopersicum L.), with the soil-applied biocontrol agent Trichoderma virens (106 spores/1 g soil), which decreased the gray mold disease index in plant leaves at 72 hpi with B. cinerea suspension (1 × 106 spores/mL). The tomato leaves were found to emit 100 VOCs, annotated and putatively annotated, assigned to six classes by the headspace GCxGC TOF-MS method. In Trichoderma-treated plants with a decreased grey mold disease index, the increased emission or appearance of 2-hexenal, (2E,4E)-2,4-hexadienal, 2-hexyn-1-ol, 3,6,6-trimethyl-2-cyclohexen-1-one, 1-octen-3-ol, 1,5-octadien-3-ol, 2-octenal, octanal, 2-penten-1-ol, (Z)-6-nonenal, prenol, and acetophenone, and 2-hydroxyacetophenone, ß-phellandrene, ß-myrcene, 2-carene, δ-elemene, and isocaryophyllene, and ß-ionone, 2-methyltetrahydrofuran, and 2-ethyl-, and 2-pentylfuran, ethyl, butyl, and hexyl acetate were most noticeable. This is the first report of the VOCs that were released by tomato plants treated with Trichoderma, which may be used in practice against B. cinerea, although this requires further analysis, including the complete identification of VOCs and determination of their potential as agents that are capable of the direct and indirect control of pathogens.


Assuntos
Hypocrea , Solanum lycopersicum , Trichoderma , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/farmacologia , Solo
2.
Cells ; 11(19)2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36231012

RESUMO

In the present study, Trichoderma virens TRS 106 decreased grey mould disease caused by Botrytis cinerea in tomato plants (S. lycopersicum L.) by enhancing their defense responses. Generally, plants belonging to the 'Remiz' variety, which were infected more effectively by B. cinerea than 'Perkoz' plants, generated more reactive molecules such as superoxide (O2-) and peroxynitrite (ONOO-), and less hydrogen peroxide (H2O2), S-nitrosothiols (SNO), and green leaf volatiles (GLV). Among the new findings, histochemical analyses revealed that B. cinerea infection caused nitric oxide (NO) accumulation in chloroplasts, which was not detected in plants treated with TRS 106, while treatment of plants with TRS 106 caused systemic spreading of H2O2 and NO accumulation in apoplast and nuclei. SPME-GCxGC TOF-MS analysis revealed 24 volatile organic compounds (VOC) released by tomato plants treated with TRS 106. Some of the hexanol derivatives, e.g., 4-ethyl-2-hexynal and 1,5-hexadien-3-ol, and salicylic acid derivatives, e.g., 4-hepten-2-yl and isoamyl salicylates, are considered in the protection of tomato plants against B. cinerea for the first time. The results are valuable for further studies aiming to further determine the location and function of NO in plants treated with Trichoderma and check the contribution of detected VOC in plant protection against B. cinerea.


Assuntos
Hypocrea , S-Nitrosotióis , Solanum lycopersicum , Compostos Orgânicos Voláteis , Botrytis/fisiologia , Hexanóis/farmacologia , Peróxido de Hidrogênio/farmacologia , Óxido Nítrico , Nitrogênio , Oxigênio/farmacologia , Ácido Peroxinitroso , Doenças das Plantas , S-Nitrosotióis/farmacologia , Ácido Salicílico/farmacologia , Superóxidos
3.
Front Plant Sci ; 10: 421, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057564

RESUMO

In the present study, Trichoderma atroviride TRS25 is presented as a biological control agent, which significantly limits the development of infection and reduces the disease caused by the pathogenic fungus Rhizoctonia solani in cucumber plants (Cucumis sativus L.). The systemic disease suppression is related to oxidative, signaling, and biochemical changes, that are triggered in response to a pathogen. Induction of systemic defense in cucumber by TRS25 greatly depends on the accumulation of signaling molecules including hydrogen peroxide (H2O2) and nitric oxide (NO) as well as salicylic acid (SA) and its derivatives including methyl salicylate (MeSA) and octyl salicylate (OSA). The study established that NO was accumulated in leaves and shoots of the cucumber plants, especially those pretreated with Trichoderma and inoculated with R. solani, where the compound was accumulated mainly in the cells localized in the vascular bundles and in epidermal tissues. We suggest, for the first time, that in the plants pretreated with TRS25, the accumulation of H2O2 and NO may be related to catalase (CAT) and S-nitrosoglutathione reductase (GSNOR) activity decrease. On the other hand, excessive accumulation of NO and SA may be controlled by forming their inactive forms, S-nitrosothiols (SNO) and salicylic acid glucosylated conjugates (SAGC), respectively. The obtained results suggest that the mentioned molecules may be an important component of the complex signaling network activated by TRS25, which is positively involved in systemic defense responses of cucumber plants against R. solani.

4.
Postepy Biochem ; 53(3): 263-71, 2007.
Artigo em Polonês | MEDLINE | ID: mdl-18399354

RESUMO

There are still many controversial observations and opinions on the cellular/subcellular localization and sources of endogenous nitric oxide synthesis in plant cells. NO can be produced in plants by non-enzymatic and enzymatic systems depending on plant species, organ or tissue as well as on physiological state of the plant and changing environmental conditions. The best documented reactions in plant that contribute to NO production are NO production from nitrite as a substrate by cytosolic (cNR) and membrane bound (PM-NR) nitrate reductases (NR), and NO production by several arginine-dependent nitric oxide synthase-like activities (NOS). The latest papers indicate that mitochondria are an important source of arginine- and nitrite-dependent NO production in plants. There are other potential enzymatic sources of NO in plants including xanthine oxidoreductase, peroxidase, cytochrome P450.


Assuntos
Citosol/metabolismo , Mitocôndrias/metabolismo , Nitrato Redutase/fisiologia , Óxido Nítrico/biossíntese , Plantas/metabolismo , Animais , Mitocôndrias/enzimologia , Óxido Nítrico Sintase/fisiologia , Fenômenos Fisiológicos Vegetais , Plantas/enzimologia
5.
Plant Physiol Biochem ; 43(6): 623-35, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15922611

RESUMO

Nitric oxide (NO) has been postulated to be required, together with reactive oxygen species (ROS), for activation of disease resistance reactions of plants to infection with a pathogen or elicitor treatment. However, biochemical mechanisms by which ROS and NO participate in these reactions are still under intensive study and controversial debate. We previously demonstrated that o-hydroxyethylorutin when applied on tomato leaves (Lycopersicon esculentum Mill. cv. "Perkoz") restricted Botrytis cinerea infection development. In this research we investigated ROS and NO generation in tomato plants treated with o-hydroxyethylorutin, non-treated and infected ones. The NO content was enhanced or decreased in the studied plants by supplying them with NO generator-SNP or scavenger-cPTIO. NO detection was carried out using diaminofluorescein diacetate (DAF-DA) in conjunction with confocal laser scanning microscopy. The influence of elevated and decreased levels of NO on B. cinerea infection development and ROS generation was studied. The elevated NO concentration in tomato leaves strongly decreased hydrogen peroxide concentration without affecting other studied ROS (superoxide anion and hydroxyl radical) levels. H2O2 concentrations in NO-supplied leaves were low regardless of further treatment of tomato leaves with o-hydroxyethylorutin or inoculation with B. cinerea. The low H2O2 concentration coincided with quick and severe infection development in NO-supplied leaves. As activities of enzymes generating (SOD EC 1.15.1.1)) and removing (APX EC 1.11.1.11, CAT EC 1.11.1.6) H2O2 were unchanged in the studied plants, the decrease in H2O2 concentration was probably due to a direct NO-H2O2 interaction.


Assuntos
Botrytis , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Doenças das Plantas , Rutina/análogos & derivados , Solanum lycopersicum/efeitos dos fármacos , Óxidos N-Cíclicos/farmacologia , Imidazóis/farmacologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Rutina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...