Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 9(3): e1003322, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23505380

RESUMO

Cereal endosperm represents 60% of the calories consumed by human beings worldwide. In addition, cereals also serve as the primary feedstock for livestock. However, the regulatory mechanism of cereal endosperm and seed development is largely unknown. Polycomb complex has been shown to play a key role in the regulation of endosperm development in Arabidopsis, but its role in cereal endosperm development remains obscure. Additionally, the enzyme activities of the polycomb complexes have not been demonstrated in plants. Here we purified the rice OsFIE2-polycomb complex using tandem affinity purification and demonstrated its specific H3 methyltransferase activity. We found that the OsFIE2 gene product was responsible for H3K27me3 production specifically in vivo. Genetic studies showed that a reduction of OsFIE2 expression led to smaller seeds, partially filled seeds, and partial loss of seed dormancy. Gene expression and proteomics analyses found that the starch synthesis rate limiting step enzyme and multiple storage proteins are down-regulated in OsFIE2 reduction lines. Genome wide ChIP-Seq data analysis shows that H3K27me3 is associated with many genes in the young seeds. The H3K27me3 modification and gene expression in a key helix-loop-helix transcription factor is shown to be regulated by OsFIE2. Our results suggest that OsFIE2-polycomb complex positively regulates rice endosperm development and grain filling via a mechanism highly different from that in Arabidopsis.


Assuntos
Grão Comestível , Oryza , Proteínas do Grupo Polycomb , Sementes , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Histona-Lisina N-Metiltransferase , Complexos Multiproteicos , Oryza/genética , Oryza/crescimento & desenvolvimento , Dormência de Plantas/genética , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento
2.
PLoS One ; 6(9): e25260, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21984925

RESUMO

Chromatin immunoprecipitation coupled with high throughput DNA Sequencing (ChIP-Seq) has emerged as a powerful tool for genome wide profiling of the binding sites of proteins associated with DNA such as histones and transcription factors. However, no peak calling program has gained consensus acceptance by the scientific community as the preferred tool for ChIP-Seq data analysis. Analyzing the large data sets generated by ChIP-Seq studies remains highly challenging for most molecular biology laboratories.Here we profile H3K27me3 enrichment sites in rice young endosperm using the ChIP-Seq approach and analyze the data using four peak calling algorithms (FindPeaks, PeakSeq, USeq, and MACS). Comparison of the four algorithms reveals that these programs produce very different peaks in terms of peak size, number, and position relative to genes. We verify the peak predictions using ChIP-PCR to evaluate the accuracy of peak prediction of the four algorithms. We discuss the approach of each algorithm and compare similarities and differences in the results. Despite their differences in the peaks identified, all of the programs reach similar conclusions about the effect of H3K27me3 on gene expression. Its presence either upstream or downstream of a gene is predominately associated with repression of the gene. Additionally, GO analysis finds that a substantially higher ratio of genes associated with H3K27me3 were involved in multicellular organism development, signal transduction, response to external and endogenous stimuli, and secondary metabolic pathways than the rest of the rice genome.


Assuntos
Algoritmos , Metilação de DNA/genética , Endosperma/genética , Histonas/genética , Oryza/genética , Imunoprecipitação da Cromatina , Análise de Sequência de DNA
3.
BMC Bioinformatics ; 12: 115, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21513508

RESUMO

BACKGROUND: High-throughput mass spectrometry (MS) proteomics data is increasingly being used to complement traditional structural genome annotation methods. To keep pace with the high speed of experimental data generation and to aid in structural genome annotation, experimentally observed peptides need to be mapped back to their source genome location quickly and exactly. Previously, the tools to do this have been limited to custom scripts designed by individual research groups to analyze their own data, are generally not widely available, and do not scale well with large eukaryotic genomes. RESULTS: The Proteogenomic Mapping Tool includes a Java implementation of the Aho-Corasick string searching algorithm which takes as input standardized file types and rapidly searches experimentally observed peptides against a given genome translated in all 6 reading frames for exact matches. The Java implementation allows the application to scale well with larger eukaryotic genomes while providing cross-platform functionality. CONCLUSIONS: The Proteogenomic Mapping Tool provides a standalone application for mapping peptides back to their source genome on a number of operating system platforms with standard desktop computer hardware and executes very rapidly for a variety of datasets. Allowing the selection of different genetic codes for different organisms allows researchers to easily customize the tool to their own research interests and is recommended for anyone working to structurally annotate genomes using MS derived proteomics data.


Assuntos
Anotação de Sequência Molecular/métodos , Peptídeos/genética , Algoritmos , Códon , Genômica/métodos , Espectrometria de Massas/métodos , Biossíntese de Proteínas , Proteômica/métodos , Software
4.
BMC Bioinformatics ; 10 Suppl 11: S20, 2009 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-19811686

RESUMO

BACKGROUND: This paper presents a framework for integrating disparate data sets to predict gene function. The algorithm constructs a graph, called an integrated similarity graph, by computing similarities based upon both gene expression and textual phenotype data. This integrated graph is then used to make predictions about whether individual genes should be assigned a particular annotation from the Gene Ontology. RESULTS: A combined graph was generated from publicly-available gene expression data and phenotypic information from Saccharomyces cerevisiae. This graph was used to assign annotations to genes, as were graphs constructed from gene expression data and textual phenotype information alone. While the F-measure appeared similar for all three methods, annotations based upon the integrated similarity graph exhibited a better overall precision than gene expression or phenotype information alone can generate. The integrated approach was also able to assign almost as many annotations as the gene expression method alone, and generated significantly more total and correct assignments than the phenotype information could provide. CONCLUSION: These results suggest that augmenting standard gene expression data sets with publicly-available textual phenotype data can help generate more precise functional annotation predictions while mitigating the weaknesses of a standard textual phenotype approach.


Assuntos
Biologia Computacional/métodos , Expressão Gênica , Genômica/métodos , Fenótipo , Algoritmos , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...