Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Vis Comput Graph ; 29(11): 4417-4425, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37788210

RESUMO

Visual behavior depends on both bottom-up mechanisms, where gaze is driven by the visual conspicuity of the stimuli, and top-down mechanisms, guiding attention towards relevant areas based on the task or goal of the viewer. While this is well-known, visual attention models often focus on bottom-up mechanisms. Existing works have analyzed the effect of high-level cognitive tasks like memory or visual search on visual behavior; however, they have often done so with different stimuli, methodology, metrics and participants, which makes drawing conclusions and comparisons between tasks particularly difficult. In this work we present a systematic study of how different cognitive tasks affect visual behavior in a novel within-subjects design scheme. Participants performed free exploration, memory and visual search tasks in three different scenes while their eye and head movements were being recorded. We found significant, consistent differences between tasks in the distributions of fixations, saccades and head movements. Our findings can provide insights for practitioners and content creators designing task-oriented immersive applications.


Assuntos
Gráficos por Computador , Movimentos Oculares , Humanos , Movimentos Sacádicos , Movimentos da Cabeça , Fixação Ocular , Percepção Visual
2.
IEEE Trans Vis Comput Graph ; 29(11): 4350-4360, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37782595

RESUMO

Understanding human visual behavior within virtual reality environments is crucial to fully leverage their potential. While previous research has provided rich visual data from human observers, existing gaze datasets often suffer from the absence of multimodal stimuli. Moreover, no dataset has yet gathered eye gaze trajectories (i.e., scanpaths) for dynamic content with directional ambisonic sound, which is a critical aspect of sound perception by humans. To address this gap, we introduce D-SAV360, a dataset of 4,609 head and eye scanpaths for 360° videos with first-order ambisonics. This dataset enables a more comprehensive study of multimodal interaction on visual behavior in virtual reality environments. We analyze our collected scanpaths from a total of 87 participants viewing 85 different videos and show that various factors such as viewing mode, content type, and gender significantly impact eye movement statistics. We demonstrate the potential of D-SAV360 as a benchmarking resource for state-of-the-art attention prediction models and discuss its possible applications in further research. By providing a comprehensive dataset of eye movement data for dynamic, multimodal virtual environments, our work can facilitate future investigations of visual behavior and attention in virtual reality.


Assuntos
Gráficos por Computador , Realidade Virtual , Humanos , Fixação Ocular , Movimentos Oculares , Atenção
3.
PLoS One ; 17(3): e0265591, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35316292

RESUMO

Time perception is fluid and affected by manipulations to visual inputs. Previous literature shows that changes to low-level visual properties alter time judgments at the millisecond-level. At longer intervals, in the span of seconds and minutes, high-level cognitive effects (e.g., emotions, memories) elicited by visual inputs affect time perception, but these effects are confounded with semantic information in these inputs, and are therefore challenging to measure and control. In this work, we investigate the effect of asemantic visual properties (pure visual features devoid of emotional or semantic value) on interval time perception. Our experiments were conducted with binary and production tasks in both conventional and head-mounted displays, testing the effects of four different visual features (spatial luminance contrast, temporal frequency, field of view, and visual complexity). Our results reveal a consistent pattern: larger visual changes all shorten perceived time in intervals of up to 3min, remarkably contrary to their effect on millisecond-level perception. Our findings may help alter participants' time perception, which can have broad real-world implications.


Assuntos
Percepção do Tempo , Humanos , Julgamento , Orientação Espacial , Tempo , Visão Ocular , Percepção Visual
4.
Sci Rep ; 10(1): 12363, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703981

RESUMO

We report an auditory effect of visual performance degradation in a virtual reality (VR) setting, where the viewing conditions are significantly different from previous studies. With the presentation of temporally congruent but spatially incongruent sound, we can degrade visual performance significantly at detection and recognition levels. We further show that this effect is robust to different types and locations of both auditory and visual stimuli. We also analyze participants behavior with an eye tracker to study the underlying cause of the degradation effect. We find that the performance degradation occurs even in the absence of saccades towards the sound source, during normal gaze behavior. This suggests that this effect is not caused by oculomotor phenomena, but rather by neural interactions or attentional shifts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...