Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 158(5): 1032-1057, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34278579

RESUMO

Erythropoietin (Epo), the main erythropoiesis-stimulating factor widely prescribed to overcome anemia, is also known nowadays for its cytoprotective action on non-hematopoietic tissues. In this context, Epo showed not only its ability to cross the blood-brain barrier, but also its expression in the brain of mammals. In clinical trials, recombinant Epo treatment has been shown to stimulate neurogenesis; improve cognition; and activate antiapoptotic, antioxidant, and anti-inflammatory signaling pathways. These mechanisms, proposed to characterize a neuroprotective property, opened new perspectives on the Epo pharmacological potencies. However, many questions arise about a possible physiological role of Epo in the central nervous system (CNS) and the factors or environmental conditions that induce its expression. Although Epo may be considered a strong candidate to be used against neuronal damage, long-term treatments, particularly when high Epo doses are needed, may induce thromboembolic complications associated with increases in hematocrit and blood viscosity. To avoid these adverse effects, different Epo analogs without erythropoietic activity but maintaining neuroprotection ability are currently being investigated. Carbamylated erythropoietin, as well as alternative molecules like Epo fusion proteins and partial peptides of Epo, seems to match this profile. This review will focus on the discussion of experimental evidence reported in recent years linking erythropoietin and CNS function through investigations aimed at finding benefits in the treatment of neurodegenerative diseases. In addition, it will review the proposed mechanisms for novel derivatives which may clarify and, eventually, improve the neuroprotective action of Epo.


Assuntos
Encéfalo/metabolismo , Eritropoetina/metabolismo , Doenças Neurodegenerativas/metabolismo , Neuroproteção/fisiologia , Receptores da Eritropoetina/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Eritropoetina/administração & dosagem , Humanos , Doenças Neurodegenerativas/terapia , Neuroproteção/efeitos dos fármacos
2.
Biol Chem ; 401(10): 1167-1180, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32386183

RESUMO

The proliferation and migration of endothelial cells are vascular events of inflammation, a process which can also potentiate the effects of promigratory factors. With the aim of investigating possible modifications in the activity of erythropoietin (Epo) in an inflammatory environment, we found that Epo at a non-promigratory concentration was capable of stimulating EA.hy926 endothelial cell migration when TNF-α was present. VCAM-1 and ICAM-1 expression, as well as adhesion of monocytic THP-1 cells to endothelial layers were also increased. Structurally modified Epo (carbamylation or N-homocysteinylation) did not exhibit these effects. The sensitizing effect of TNF-α on Epo activity was mediated by the Epo receptor. Inhibition assays targeting the PI3K/mTOR/NF-κB pathway, shared by Epo and TNF-α, show a cross-talk between both cytokines. As observed in assays using antioxidants, cell migration elicited by TNF-α + Epo depended on TNF-α-generated reactive oxygen species (ROS). ROS-mediated inactivation of protein tyrosine phosphatase 1B (PTP1B), involved in Epo signaling termination, could explain the synergistic effect of these cytokines. Our results suggest that ROS generated by inflammation inactivate PTP1B, causing the Epo signal to last longer. This mechanism, along with the cross-talk between both cytokines, could explain the sensitizing action of TNF-α on the migratory effect of Epo.


Assuntos
Eritropoetina/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Adesão Celular , Movimento Celular , Células Cultivadas , Humanos , Proteína Tirosina Fosfatase não Receptora Tipo 1/análise , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética
3.
Biochim Biophys Acta Mol Cell Res ; 1867(1): 118569, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676353

RESUMO

Water influx through aquaporin-1 (AQP-1) has been linked to the ability of different cell types to migrate, and therefore plays an important part in processes like metastasis and angiogenesis. Since the erythroid growth factor erythropoietin (Epo) is now recognized as an angiogenesis promoter, we investigated the participation of AQP-1 as a downstream effector of this cytokine in the migration of endothelial cells. Inhibition of AQP-1 with either mercury ions (Hg2+) or a specific siRNA led to an impaired migration of EA.hy926 endothelial cells exposed to Epo (wound-healing assays). Epo also induced the expression of AQP-1 at mRNA and protein levels, an effect which was dependent on the influx of extracellular calcium through L-type calcium channels as well as TRPC3 channels. The relationship between Epo and AQP-1 was further confirmed at shorter exposure times, as the cytokine was unable to trigger calcium influxes in cells where AQP-1 had previously been knocked down. Moreover, Epo promoted changes in the subcellular localization of AQP-1 as well as rearrangements in the actin cytoskeleton, which are consistent with a migratory phenotype. Worthy of note, carbamylated erythropoietin (cEpo), the non-erythropoietic and non-promigratory derivative of Epo, was incapable of AQP-1 modulation. The therapeutical implications of aquaporin targeting in angiogenesis-related diseases highlight the importance of the present results in the context of the relationship between AQP-1 and Epo.


Assuntos
Aquaporina 1/fisiologia , Movimento Celular/efeitos dos fármacos , Eritropoetina/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Células A549 , Aquaporina 1/antagonistas & inibidores , Movimento Celular/genética , Células Cultivadas , Eritropoetina/fisiologia , Humanos , RNA Interferente Pequeno/farmacologia , Cicatrização/efeitos dos fármacos , Cicatrização/genética
4.
FEBS J ; 285(20): 3801-3814, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30103295

RESUMO

Many patients under therapy with recombinant human erythropoietin (rhuEPO) show resistance to the treatment, an effect likely associated with the accumulation of tissue factors, especially in renal and cardiovascular diseases. Hyperhomocysteinemia due to high serum levels of homocysteine has been suggested among the risk factors in those pathologies. Its main effect is the N-homocysteinylation of proteins due to the interaction between the highly reactive homocysteine thiolactone (HTL) and lysine residues. The aim of this study was to evaluate the effect of N-homocysteinylation on the erythropoietic and antiapoptotic abilities of EPO, which can be a consequence of structural changes in the modified protein. We found that both cellular functions were altered in the presence of HTL-EPO. A decreased net positive charge of HTL-EPO was detected by capillary zone electrophoresis, while analysis of polyacrylamide gel electropherograms suggested formation of aggregates. Far-UV spectra, obtained by Circular Dichroism Spectroscopy, indicated a switch of the protein's secondary structure from α-helix to ß-sheet structures. Results of Congo red and Thioflavin T assays confirm the formation of repetitive ß-sheet structures, which may account for aggregates. Accordingly, Dynamic Light Scattering analysis showed a markedly larger radius of the HTL-EPO structures, supporting the formation of soluble oligomers. These structural changes might interfere with the conformational adaptations necessary for efficient ligand-receptor interaction, thus affecting the proliferative and antiapoptotic functions of EPO. The present findings may contribute to explain the resistance exhibited by patients with cardio-renal syndrome to treatment with rhuEPO, as a consequence of structural modifications due to protein N-homocysteinylation.


Assuntos
Apoptose , Proliferação de Células , Eritropoetina/química , Homocisteína/análogos & derivados , Lisina/química , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Células Cultivadas , Eritropoetina/metabolismo , Homocisteína/química , Humanos , Megacariócitos/metabolismo , Megacariócitos/patologia , Ligação Proteica
5.
Eur J Cell Biol ; 97(6): 411-421, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29945737

RESUMO

Calcium (Ca2+) plays an important role in angiogenesis, as it activates the cell migration machinery. Different proangiogenic factors have been demonstrated to induce transient Ca2+ increases in endothelial cells. This has raised interest in the contribution of Ca2+ channels to cell migration, and in a possible use of channel-blocking compounds in angiogenesis-related pathologies. We have investigated the ability of erythropoietin (Epo), a cytokine recently involved in angiogenesis, to induce Ca2+ influx through different types of membrane channels in EA.hy926 endothelial cells. The voltage-dependent Ca2+ channel antagonists amlodipine and diltiazem inhibited an Epo-triggered transient rise in intracellular Ca2+, similarly to a specific inhibitor (Pyr3) and a blocking antibody against the transient potential calcium channel 3 (TRPC3). Unlike diltiazem, amlodipine and the TRPC3 inhibitors prevented the stimulating action of Epo in cell migration and in vitro angiogenesis assays. Amlodipine was also able to inhibit an increase in endothelial cell migration induced by Epo in an inflammatory environment generated with TNF-α. These results support the participation of Ca2+ entry through voltage-dependent and transient potential channels in Epo-driven endothelial cell migration, highlighting the antiangiogenic activity of amlodipine.


Assuntos
Canais de Cálcio/metabolismo , Membrana Celular/metabolismo , Movimento Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Eritropoetina/metabolismo , Células Cultivadas , Humanos
7.
Ann Hematol ; 95(10): 1595-601, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27465156

RESUMO

Aquaporin-1 (AQP1) is the membrane water channel responsible for changes in erythrocyte volume in response to the tonicity of the medium. As the aberrant distribution of proteins in hereditary spherocytosis (HS) generates deficiencies of proteins other than those codified by the mutated gene, we postulated that AQP1 expression might be impaired in spherocytes. AQP1 expression was evaluated through flow cytometry in 5 normal controls, 1 autoimmune hemolytic anemia, 10 HS (2 mild, 3 moderate, 2 severe, and 3 splenectomized), and 3 silent carriers. The effect of AQP1 inhibitors was evaluated through water flow-based tests: osmotic fragility and hypertonic cryohemolysis. Serum osmolality was measured in 20 normal controls and 13 HS. The effect of erythropoietin (Epo) on AQP1 expression was determined in cultures of erythroleukemia UT-7 cells, dependent on Epo to survive. Independent of erythrocyte size, HS patients showed a lower content of AQP1 in erythrocyte membranes which correlated with the severity of the disease. Accordingly, red blood cells from HS subjects were less sensitive to cryohemolysis than normal erythrocytes after inhibition of the AQP1 water channel. A lower serum osmolality in HS with respect to normal controls suggests alterations during reticulocyte remodeling. The decreased AQP1 expression could contribute to explain variable degrees of anemia in hereditary spherocytosis. The finding of AQP1 expression induced by Epo in a model of erythroid cells may be interpreted as a mechanism to restore the balance of red cell water fluxes.


Assuntos
Aquaporina 1/biossíntese , Eritrócitos/metabolismo , Regulação da Expressão Gênica , Esferocitose Hereditária/sangue , Adolescente , Adulto , Anemia Hemolítica Autoimune/sangue , Anemia Hemolítica Autoimune/genética , Aquaporina 1/sangue , Aquaporina 1/genética , Transporte Biológico , Água Corporal , Linhagem Celular , Criança , Pré-Escolar , Membrana Eritrocítica/metabolismo , Eritrócitos/patologia , Eritropoetina/farmacologia , Hemólise , Heterozigoto , Humanos , Leucemia Linfocítica Crônica de Células B/sangue , Pessoa de Meia-Idade , Concentração Osmolar , Fragilidade Osmótica , Esferocitose Hereditária/genética , Esferocitose Hereditária/cirurgia , Esplenectomia
10.
Cell Biochem Biophys ; 65(2): 145-57, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22903352

RESUMO

Eryptosis is a process by which mature erythrocytes can undergo self-destruction sharing several features with apoptosis. Premature programmed erythrocyte death may be induced by different agents. In this study, we compared mechanisms involved in two eryptotic models (oxidative stress and cell calcium overload) so as to distinguish whether they share signaling pathways and could be prevented by erythropoietin (Epo). Phosphatidylserine (PS) translocation and increased calcium content were common signs in erythrocytes exposed to sodium nitrite plus hydrogen peroxide or calcium ionophore A23187 (CaI), while increased ROS and decreased GSH levels were detected in the oxidative model. Protein kinase activation seemed to be an outstanding feature in eryptosis induced by oxidative stress, whereas phosphatase activation was favored in the CaI model. Cell morphology and membrane protein modifications were also differential signs between both models. Epo was able to prevent cell oxidative imbalance, thus blunting PS translocation. However, the hormone favored intracellular calcium influx which could be the reason why it could not completely counteract the induction of eryptosis. Instead, Epo was unable to inhibit PS externalization in the CaI model. The different mechanisms involved in the eryptotic models may explain the differential action of Epo upon erythrocytes induced to eryptosis by different agents.


Assuntos
Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Eritrócitos/efeitos dos fármacos , Eritropoetina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Adulto , Calcimicina/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Eritrócitos/citologia , Eritrócitos/metabolismo , Exocitose/efeitos dos fármacos , Citometria de Fluxo , Humanos , Peróxido de Hidrogênio/farmacologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ionóforos/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilserinas/metabolismo , Nitrito de Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...