Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 15679, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735195

RESUMO

Gut microbiome disruptions may lead to adverse effects on wildlife fitness and viability, thus maintaining host microbiota biodiversity needs to become an integral part of wildlife conservation. The highly-endangered callitrichid golden lion tamarin (GLT-Leontopithecus rosalia) is a rare conservation success, but allochthonous callitrichid marmosets (Callithrix) serve as principle ecological GLT threats. However, incorporation of microbiome approaches to GLT conservation is impeded by limited gut microbiome studies of Brazilian primates. Here, we carried out analysis of gut metagenomic pools from 114 individuals of wild and captive GLTs and marmosets. More specifically, we analyzed the bacterial component of ultra filtered samples originally collected as part of a virome profiling study. The major findings of this study are consistent with previous studies in showing that Bifidobacterium, a bacterial species important for the metabolism of tree gums consumed by callitrichids, is an important component of the callitrichid gut microbiome - although GTLs and marmosets were enriched for different species of Bifidobacterium. Additionally, the composition of GLT and marmoset gut microbiota is sensitive to host environmental factors. Overall, our data expand baseline gut microbiome data for callitrichids to allow for the development of new tools to improve their management and conservation.


Assuntos
Callithrix , Microbioma Gastrointestinal , Humanos , Animais , Bifidobacterium , Callitrichinae
2.
Trends Genet ; 39(7): 545-559, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36801111

RESUMO

The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species. We review case studies to illustrate how reference genomes can facilitate biodiversity research and conservation across the tree of life. We conclude that the time is ripe to view reference genomes as fundamental resources and to integrate their use as a best practice in conservation genomics.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Genômica , Genoma
3.
Sci Rep ; 12(1): 5049, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322053

RESUMO

Mammalian captive dietary specialists like folivores are prone to gastrointestinal distress and primate dietary specialists suffer the greatest gut microbiome diversity losses in captivity compared to the wild. Marmosets represent another group of dietary specialists, exudivores that eat plant exudates, but whose microbiome remains relatively less studied. The common occurrence of gastrointestinal distress in captive marmosets prompted us to study the Callithrix gut microbiome composition and predictive function through bacterial 16S ribosomal RNA V4 region sequencing. We sampled 59 wild and captive Callithrix across four species and their hybrids. Host environment had a stronger effect on the gut microbiome than host taxon. Wild Callithrix gut microbiomes were enriched for Bifidobacterium, which process host-indigestible carbohydrates. Captive marmoset guts were enriched for Enterobacteriaceae, a family containing pathogenic bacteria. While gut microbiome function was similar across marmosets, Enterobacteriaceae seem to carry out most functional activities in captive host guts. More diverse bacterial taxa seem to perform gut functions in wild marmosets, with Bifidobacterium being important for carbohydrate metabolism. Captive marmosets showed gut microbiome composition aspects seen in human gastrointestinal diseases. Thus, captivity may perturb the exudivore gut microbiome, which raises implications for captive exudivore welfare and calls for husbandry modifications.


Assuntos
Microbioma Gastrointestinal , Animais , Bactérias/genética , Bifidobacterium/genética , Callithrix/genética , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Mamíferos/genética , RNA Ribossômico 16S/genética
4.
Trends Ecol Evol ; 37(3): 197-202, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35086739

RESUMO

Progress in genome sequencing now enables the large-scale generation of reference genomes. Various international initiatives aim to generate reference genomes representing global biodiversity. These genomes provide unique insights into genomic diversity and architecture, thereby enabling comprehensive analyses of population and functional genomics, and are expected to revolutionize conservation genomics.


Assuntos
Genoma , Genômica , Biodiversidade
5.
Sci Rep ; 11(1): 17279, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446741

RESUMO

The Brazilian buffy-tufted-ear marmoset (Callithrix aurita), one of the world's most endangered primates, is threatened by anthropogenic hybridization with exotic, invasive marmoset species. As there are few genetic data available for C. aurita, we developed a PCR-free protocol with minimal technical requirements to rapidly generate genomic data with genomic skimming and portable nanopore sequencing. With this direct DNA sequencing approach, we successfully determined the complete mitogenome of a marmoset that we initially identified as C. aurita. The obtained nanopore-assembled sequence was highly concordant with a Sanger sequenced version of the same mitogenome. Phylogenetic analyses unexpectedly revealed that our specimen was a cryptic hybrid, with a C. aurita phenotype and C. penicillata mitogenome lineage. We also used publicly available mitogenome data to determine diversity estimates for C. aurita and three other marmoset species. Mitogenomics holds great potential to address deficiencies in genomic data for endangered, non-model species such as C. aurita. However, we discuss why mitogenomic approaches should be used in conjunction with other data for marmoset species identification. Finally, we discuss the utility and implications of our results and genomic skimming/nanopore approach for conservation and evolutionary studies of C. aurita and other marmosets.


Assuntos
Callithrix/genética , Espécies em Perigo de Extinção , Genômica/métodos , Hibridização Genética/genética , Sequenciamento por Nanoporos/métodos , Animais , Brasil , Callithrix/classificação , DNA Mitocondrial/classificação , DNA Mitocondrial/genética , Evolução Molecular , Genoma Mitocondrial/genética , Masculino , Fenótipo , Filogenia , Especificidade da Espécie
6.
BMC Genomics ; 22(1): 239, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823806

RESUMO

BACKGROUND: Callithrix marmosets are a relatively young primate radiation, whose phylogeny is not yet fully resolved. These primates are naturally para- and allopatric, but three species with highly invasive potential have been introduced into the southeastern Brazilian Atlantic Forest by the pet trade. There, these species hybridize with each other and endangered, native congeners. We aimed here to reconstruct a robust Callithrix phylogeny and divergence time estimates, and identify the biogeographic origins of autochthonous and allochthonous Callithrix mitogenome lineages. We sequenced 49 mitogenomes from four species (C. aurita, C. geoffroyi, C. jacchus, C. penicillata) and anthropogenic hybrids (C. aurita x Callithrix sp., C. penicillata x C. jacchus, Callithrix sp. x Callithrix sp., C. penicillata x C. geoffroyi) via Sanger and whole genome sequencing. We combined these data with previously published Callithrix mitogenomes to analyze five Callithrix species in total. RESULTS: We report the complete sequence and organization of the C. aurita mitogenome. Phylogenetic analyses showed that C. aurita was the first to diverge within Callithrix 3.54 million years ago (Ma), while C. jacchus and C. penicillata lineages diverged most recently 0.5 Ma as sister clades. MtDNA clades of C. aurita, C. geoffroyi, and C. penicillata show intraspecific geographic structure, but C. penicillata clades appear polyphyletic. Hybrids, which were identified by phenotype, possessed mainly C. penicillata or C. jacchus mtDNA haplotypes. The biogeographic origins of mtDNA haplotypes from hybrid and allochthonous Callithrix were broadly distributed across natural Callithrix ranges. Our phylogenetic results also evidence introgression of C. jacchus mtDNA into C. aurita. CONCLUSION: Our robust Callithrix mitogenome phylogeny shows C. aurita lineages as basal and C. jacchus lineages among the most recent within Callithrix. We provide the first evidence that parental mtDNA lineages of anthropogenic hybrid and allochthonous marmosets are broadly distributed inside and outside of the Atlantic Forest. We also show evidence of cryptic hybridization between allochthonous Callithrix and autochthonous C. aurita. Our results encouragingly show that further development of genomic resources will allow to more clearly elucidate Callithrix evolutionary relationships and understand the dynamics of Callithrix anthropogenic introductions into the Brazilian Atlantic Forest.


Assuntos
Evolução Biológica , Callithrix , Animais , Brasil , Callithrix/genética , DNA Mitocondrial/genética , Humanos , Filogenia
7.
J Med Primatol ; 50(3): 157-163, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33615486

RESUMO

BACKGROUND: The Callithrix geoffroyi are increasingly present in Brazilian urban areas, where they are vulnerable to health problems. The purpose of this study was a description of hematology and nine blood chemistry parameters of free-ranging C. geoffroyi. METHODS: Thirty individuals were captured in urban-forested settings. The marmosets were anesthetized, venopunctioned, and released shortly after recovery. The analysis was carried on in a veterinary laboratory, using automatic cells counter, staining methods, and an automatic biochemical analyzer. RESULTS AND CONCLUSIONS: Male and female free-ranging C. geoffroyi have similar hematological and blood chemistry values. The adults presented higher concentrations of erythrocytes (P <.02) and hemoglobin (P <.02) than young marmosets. The platelet concentration was lower (P <.05) in adults comparing to young marmosets. There were not statistically significant differences between young and adult blood chemistry concentrations. This is the first time that are presented hematology and blood biochemistry data on free-ranging C. geoffroyi.


Assuntos
Callithrix , Hematologia , Animais , Brasil , Meio Ambiente , Masculino , Valores de Referência
8.
ILAR J ; 61(2-3): 110-138, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34933341

RESUMO

We provide here a current overview of marmoset (Callithrix) evolution, hybridization, species biology, basic/biomedical research, and conservation initiatives. Composed of 2 subgroups, the aurita group (C aurita and C flaviceps) and the jacchus group (C geoffroyi, C jacchus, C kuhlii, and C penicillata), this relatively young primate radiation is endemic to the Brazilian Cerrado, Caatinga, and Atlantic Forest biomes. Significant impacts on Callithrix within these biomes resulting from anthropogenic activity include (1) population declines, particularly for the aurita group; (2) widespread geographic displacement, biological invasions, and range expansions of C jacchus and C penicillata; (3) anthropogenic hybridization; and (4) epizootic Yellow Fever and Zika viral outbreaks. A number of Brazilian legal and conservation initiatives are now in place to protect the threatened aurita group and increase research about them. Due to their small size and rapid life history, marmosets are prized biomedical models. As a result, there are increasingly sophisticated genomic Callithrix resources available and burgeoning marmoset functional, immuno-, and epigenomic research. In both the laboratory and the wild, marmosets have given us insight into cognition, social group dynamics, human disease, and pregnancy. Callithrix jacchus and C penicillata are emerging neotropical primate models for arbovirus disease, including Dengue and Zika. Wild marmoset populations are helping us understand sylvatic transmission and human spillover of Zika and Yellow Fever viruses. All of these factors are positioning marmosets as preeminent models to facilitate understanding of facets of evolution, hybridization, conservation, human disease, and emerging infectious diseases.


Assuntos
Febre Amarela , Infecção por Zika virus , Zika virus , Animais , Brasil , Callithrix/genética , Genômica , Hibridização Genética
9.
Evol Anthropol ; 28(4): 189-209, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31222847

RESUMO

During the late Pleistocene, isolated lineages of hominins exchanged genes thus influencing genomic variation in humans in both the past and present. However, the dynamics of this genetic exchange and associated phenotypic consequences through time remain poorly understood. Gene exchange across divergent lineages can result in myriad outcomes arising from these dynamics and the environmental conditions under which it occurs. Here we draw from our collective research across various organisms, illustrating some of the ways in which gene exchange can structure genomic/phenotypic diversity within/among species. We present a range of examples relevant to questions about the evolution of hominins. These examples are not meant to be exhaustive, but rather illustrative of the diverse evolutionary causes/consequences of hybridization, highlighting potential drivers of human evolution in the context of hybridization including: influences on adaptive evolution, climate change, developmental systems, sex-differences in behavior, Haldane's rule and the large X-effect, and transgressive phenotypic variation.


Assuntos
Evolução Biológica , Hominidae , Hibridização Genética/genética , Animais , Antropologia Física , Feminino , Genoma Humano/genética , Hominidae/anatomia & histologia , Hominidae/genética , Humanos , Masculino , Camundongos , Homem de Neandertal/anatomia & histologia , Homem de Neandertal/genética , Fenótipo , Crânio/anatomia & histologia
10.
Am J Primatol ; 79(2): 1-12, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27521158

RESUMO

Callithrix jacchus and C. penicillata are among the smallest anthropoid primates, are highly specialized tree gougers, and largely occupy Brazil's most extreme, semi-arid biomes. However, the underlying genomic factors that underpin the evolution of these species and their unique traits are under-investigated. Additionally, exotic populations of these two species are widely established throughout Brazil and hybridize with threatened native congers. Thus, both genomic and conservation factors call for a better understanding of C. jacchus and C. penicillata evolution. Here, we applied PE-RADseq to characterize genomic variation in these two species, using six C. jacchus and seven C. penicillata individuals. We identified an average of 7,463 and 5,180 SNPs/individual in C. penicillata and C. jacchus, respectively, and also found 1,395 variable sites that were represented in both species. C. penicillata showed overall higher levels of genetic diversity than C. jacchus at the variable sites present in both species. Additionally, among these variable sites, 106 showed relative interspecific divergence levels that were significantly higher than the genome-wide average. We further compared relative and absolute divergence for C. penicillata and C. jacchus between RAD loci associated with the 106 significantly diverged variable sites and all other RAD loci present in both species. The former RAD loci set showed significantly elevated relative and absolute divergence measures in comparison to the latter set. This convergence suggests that C. jacchus and C. penicillata may have diverged under a scenario of gene flow under secondary contact. Here, we demonstrate that RADseq is an efficient method to simultaneously discover and genotype a large number of markers and validate the utility of RADseq for examining Callithrix evolution.


Assuntos
Evolução Biológica , Callithrix/genética , Variação Genética , Animais , Artrópodes , Brasil , Genômica
11.
Am J Phys Anthropol ; 162(1): 157-169, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27762445

RESUMO

OBJECTIVES: Two subgroups make up the marmoset genus Callithrix. The "aurita" group is composed of two species, whereas evolutionary relationships among the four species of the "jacchus" group remain unclear. To uncover these relationships, we first sequenced mitochondrial genomes for C. kuhlii and C. penicillata to complement data available for congeners. We then constructed a phylogenetic tree based on mtDNA heavy chain protein coding genes from several primates to untangle species relationships and estimate divergence times of the jacchus group. MATERIALS AND METHODS: MtDNA genomes of C. kuhlii and C. penicillata were Sanger sequenced. These Callithrix mitogenomes were combined with other publically available primate mtDNA genomes. Phylogenies were produced using maximum likelihood and Bayesian inference. Finally, divergence times within the jacchus group of marmosets were estimated with Bayesian inference. RESULTS: In our phylogenetic tree, C. geoffroyi was the sister to all other jacchus group species, followed by C. kuhlii, while C. jacchus and C. penicillata diverged most recently. Bayesian inference showed that C. jacchus and C. penicillata diverged approximately 0.70 MYA and that the jacchus group radiated approximately 1.30 MYA. DISCUSSION: Callithrix nuclear and mtDNA phylogenies frequently result in polytomies and paraphyly. Here, we present a well-supported phylogenetic tree based on mitochondrial genome sequences, which facilitates the understanding of the divergence of the jacchus marmosets. Our results demonstrate how mitochondrial genomes can enrich Callithrix phylogenetic studies by alleviating some of the difficulties faced by previous mtDNA studies and allow formulation of hypotheses to test further under larger genomic-scale analyses.


Assuntos
Callithrix/classificação , Callithrix/genética , DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Animais , Evolução Molecular , Feminino , Masculino , Filogenia
13.
PLoS Negl Trop Dis ; 9(11): e0004198, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26571269

RESUMO

Zoonotic pathogens that cause leprosy (Mycobacterium leprae) and tuberculosis (Mycobacterium tuberculosis complex, MTBC) continue to impact modern human populations. Therefore, methods able to survey mycobacterial infection in potential animal hosts are necessary for proper evaluation of human exposure threats. Here we tested for mycobacterial-specific single- and multi-copy loci using qPCR. In a trial study in which armadillos were artificially infected with M. leprae, these techniques were specific and sensitive to pathogen detection, while more traditional ELISAs were only specific. These assays were then employed in a case study to detect M. leprae as well as MTBC in wild marmosets. All marmosets were negative for M. leprae DNA, but 14 were positive for the mycobacterial rpoB gene assay. Targeted capture and sequencing of rpoB and other MTBC genes validated the presence of mycobacterial DNA in these samples and revealed that qPCR is useful for identifying mycobacterial-infected animal hosts.


Assuntos
Reservatórios de Doenças/veterinária , Programas de Rastreamento/métodos , Técnicas de Diagnóstico Molecular/métodos , Infecções por Mycobacterium/veterinária , Mycobacterium leprae/isolamento & purificação , Mycobacterium tuberculosis/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Callithrix , RNA Polimerases Dirigidas por DNA/genética , Reservatórios de Doenças/microbiologia , Infecções por Mycobacterium/microbiologia , Mycobacterium leprae/enzimologia , Mycobacterium leprae/genética , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Sensibilidade e Especificidade
14.
PLoS One ; 10(6): e0127268, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26061111

RESUMO

Animal hybridization is well documented, but evolutionary outcomes and conservation priorities often differ for natural and anthropogenic hybrids. Among primates, an order with many endangered species, the two contexts can be hard to disentangle from one another, which carries important conservation implications. Callithrix marmosets give us a unique glimpse of genetic hybridization effects under distinct natural and human-induced contexts. Here, we use a 44 autosomal microsatellite marker panel to examine genome-wide admixture levels and introgression at a natural C. jacchus and C. penicillata species border along the São Francisco River in NE Brazil and in an area of Rio de Janeiro state where humans introduced these species exotically. Additionally, we describe for the first time autosomal genetic diversity in wild C. penicillata and expand previous C. jacchus genetic data. We characterize admixture within the natural zone as bimodal where hybrid ancestry is biased toward one parental species or the other. We also show evidence that São Francisco River islands are gateways for bidirectional gene flow across the species border. In the anthropogenic zone, marmosets essentially form a hybrid swarm with intermediate levels of admixture, likely from the absence of strong physical barriers to interspecific breeding. Our data show that while hybridization can occur naturally, the presence of physical, even if leaky, barriers to hybridization is important for maintaining species genetic integrity. Thus, we suggest further study of hybridization under different contexts to set well informed conservation guidelines for hybrid populations that often fit somewhere between "natural" and "man-made."


Assuntos
Callithrix/genética , Hibridização Genética , Animais , Brasil
15.
Am J Phys Anthropol ; 155(4): 522-36, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25186076

RESUMO

Hybridization is continually documented in primates, but effects of natural and anthropogenic hybridization on biodiversity are still unclear and differentiating between these contexts remains challenging in regards to primate evolution and conservation. Here, we examine hybridization effects on the mitochondrial DNA (mtDNA) control region of Callithrix marmosets, which provide a unique glimpse into interspecific mating under distinct anthropogenic and natural conditions. DNA was sampled from 40 marmosets along a 50-km transect from a previously uncharacterized hybrid zone in NE Brazil between the ranges of Callithrix jacchus and Callithrix penicillata. DNA was also collected from 46 marmosets along a 30-km transect in a hybrid zone in Rio de Janeiro state, Brazil, where exotic marmosets appeared in the 1980s. Combining Callithrix DNA sampled inside and outside of these hybrid zones, phylogenetic and network analyses show C. jacchus and C. penicillata being parental species to sampled hybrids. We expand limited Callithrix population genetics work by describing mtDNA diversity and demographic history of these parental species. We show ancient population expansion in C. jacchus and historically constant population size in C. penicillata, with the latter being more genetically diverse than the former. The natural hybrid zone contained higher genetic diversity relative to the anthropogenic zone. While our data suggest hybrid swarm formation within the anthropogenic zone due to removed physical reproductive barriers, this pattern is not seen in the natural hybrid zone. These results suggest different genetic dynamics within natural and anthropogenic hybridization contexts that carry important implications for primate evolution and conservation.


Assuntos
Callithrix/genética , DNA Mitocondrial/genética , Evolução Molecular , Variação Genética/genética , Hibridização Genética/genética , Animais , Antropologia Física , Brasil , Callithrix/fisiologia , Orelha/anatomia & histologia , Cabeça/anatomia & histologia , Fenótipo
16.
Proc Natl Acad Sci U S A ; 109(31): 12656-61, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22797897

RESUMO

Gene expression differences are shaped by selective pressures and contribute to phenotypic differences between species. We identified 964 copy number differences (CNDs) of conserved sequences across three primate species and examined their potential effects on gene expression profiles. Samples with copy number different genes had significantly different expression than samples with neutral copy number. Genes encoding regulatory molecules differed in copy number and were associated with significant expression differences. Additionally, we identified 127 CNDs that were processed pseudogenes and some of which were expressed. Furthermore, there were copy number-different regulatory regions such as ultraconserved elements and long intergenic noncoding RNAs with the potential to affect expression. We postulate that CNDs of these conserved sequences fine-tune developmental pathways by altering the levels of RNA.


Assuntos
DNA Intergênico/fisiologia , Dosagem de Genes/fisiologia , Regulação da Expressão Gênica/fisiologia , Pseudogenes/fisiologia , RNA não Traduzido/fisiologia , Elementos Reguladores de Transcrição/fisiologia , Animais , Linhagem Celular , Humanos , Macaca mulatta , Pan troglodytes , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...