Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 5: 5744, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25501849

RESUMO

Spartan (also known as DVC1 and C1orf124) is a PCNA-interacting protein implicated in translesion synthesis, a DNA damage tolerance process that allows the DNA replication machinery to replicate past nucleotide lesions. However, the physiological relevance of Spartan has not been established. Here we report that Spartan insufficiency in mice causes chromosomal instability, cellular senescence and early onset of age-related phenotypes. Whereas complete loss of Spartan causes early embryonic lethality, hypomorphic mice with low amounts of Spartan are viable. These mice are growth retarded and develop cataracts, lordokyphosis and cachexia at a young age. Cre-mediated depletion of Spartan from conditional knockout mouse embryonic fibroblasts results in impaired lesion bypass, incomplete DNA replication, formation of micronuclei and chromatin bridges and eventually cell death. These data demonstrate that Spartan plays a key role in maintaining structural and numerical chromosome integrity and suggest a link between Spartan insufficiency and progeria.


Assuntos
Caquexia/genética , Catarata/genética , Cromatina/química , Proteínas Cromossômicas não Histona/genética , Replicação do DNA , Proteínas de Ligação a DNA/genética , Lordose/genética , Progéria/genética , Animais , Caquexia/complicações , Caquexia/metabolismo , Caquexia/patologia , Catarata/complicações , Catarata/metabolismo , Catarata/patologia , Morte Celular , Senescência Celular/genética , Cromatina/patologia , Proteínas Cromossômicas não Histona/deficiência , Proteínas de Ligação a DNA/deficiência , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Dosagem de Genes , Expressão Gênica , Genes Letais , Instabilidade Genômica , Integrases/genética , Integrases/metabolismo , Lordose/complicações , Lordose/metabolismo , Lordose/patologia , Masculino , Camundongos , Camundongos Knockout , Micronúcleos com Defeito Cromossômico , Progéria/complicações , Progéria/metabolismo , Progéria/patologia , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Transdução de Sinais
2.
PLoS Genet ; 8(8): e1002913, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952451

RESUMO

The discovery that somatic cells are reprogrammable to pluripotency by ectopic expression of a small subset of transcription factors has created great potential for the development of broadly applicable stem-cell-based therapies. One of the concerns regarding the safe use of induced pluripotent stem cells (iPSCs) in therapeutic applications is loss of genomic integrity, a hallmark of various human conditions and diseases, including cancer. Structural chromosome defects such as short telomeres and double-strand breaks are known to limit reprogramming of somatic cells into iPSCs, but whether defects that cause whole-chromosome instability (W-CIN) preclude reprogramming is unknown. Here we demonstrate, using aneuploidy-prone mouse embryonic fibroblasts (MEFs) in which chromosome missegregation is driven by BubR1 or RanBP2 insufficiency, that W-CIN is not a barrier to reprogramming. Unexpectedly, the two W-CIN defects had contrasting effects on iPSC genomic integrity, with BubR1 hypomorphic MEFs almost exclusively yielding aneuploid iPSC clones and RanBP2 hypomorphic MEFs karyotypically normal iPSC clones. Moreover, BubR1-insufficient iPSC clones were karyotypically unstable, whereas RanBP2-insufficient iPSC clones were rather stable. These findings suggest that aneuploid cells can be selected for or against during reprogramming depending on the W-CIN gene defect and present the novel concept that somatic cell W-CIN can be concealed in the pluripotent state. Thus, karyotypic analysis of somatic cells of origin in addition to iPSC lines is necessary for safe application of reprogramming technology.


Assuntos
Aneuploidia , Diferenciação Celular/genética , Instabilidade Cromossômica/genética , Células-Tronco Pluripotentes Induzidas , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Fibroblastos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
3.
PLoS Genet ; 8(12): e1003138, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300461

RESUMO

Mosaic Variegated Aneuploidy (MVA) syndrome is a rare autosomal recessive disorder characterized by inaccurate chromosome segregation and high rates of near-diploid aneuploidy. Children with MVA syndrome die at an early age, are cancer prone, and have progeroid features like facial dysmorphisms, short stature, and cataracts. The majority of MVA cases are linked to mutations in BUBR1, a mitotic checkpoint gene required for proper chromosome segregation. Affected patients either have bi-allelic BUBR1 mutations, with one allele harboring a missense mutation and the other a nonsense mutation, or mono-allelic BUBR1 mutations combined with allelic variants that yield low amounts of wild-type BubR1 protein. Parents of MVA patients that carry single allele mutations have mild mitotic defects, but whether they are at risk for any of the pathologies associated with MVA syndrome is unknown. To address this, we engineered a mouse model for the nonsense mutation 2211insGTTA (referred to as GTTA) found in MVA patients with bi-allelic BUBR1 mutations. Here we report that both the median and maximum lifespans of the resulting BubR1(+/GTTA) mice are significantly reduced. Furthermore, BubR1(+/GTTA) mice develop several aging-related phenotypes at an accelerated rate, including cataract formation, lordokyphosis, skeletal muscle wasting, impaired exercise ability, and fat loss. BubR1(+/GTTA) mice develop mild aneuploidies and show enhanced growth of carcinogen-induced tumors. Collectively, these data demonstrate that the BUBR1 GTTA mutation compromises longevity and healthspan, raising the interesting possibility that mono-allelic changes in BUBR1 might contribute to differences in aging rates in the general population.


Assuntos
Envelhecimento/genética , Transtornos Cromossômicos/genética , Longevidade/genética , Proteínas Serina-Treonina Quinases/genética , Alelos , Animais , Proteínas de Ciclo Celular , Transtornos Cromossômicos/fisiopatologia , Humanos , Camundongos , Camundongos Transgênicos , Mosaicismo , Mutação , Fenótipo , Proteínas Serina-Treonina Quinases/fisiologia
4.
Methods Mol Biol ; 693: 181-203, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21080281

RESUMO

Gene targeting in mouse embryonic stem cells is an essential, yet still very expensive and highly time-consuming, tool and method to study gene function at the organismal level or to create mouse models of human diseases. Conventional cloning-based methods have been largely used for generating targeting vectors, but are hampered by a number of limiting factors, including the variety and location of restriction enzymes in the gene locus of interest, the specific PCR amplification of repetitive DNA sequences, and cloning of large DNA fragments. Recombineering is a technique that exploits the highly efficient homologous recombination function encoded by λ phage in Escherichia coli. Bacteriophage-based recombination can recombine homologous sequences as short as 30-50 bases, allowing manipulations such as insertion, deletion, or mutation of virtually any genomic region. The large availability of mouse genomic bacterial artificial chromosome (BAC) libraries covering most of the genome facilitates the retrieval of genomic DNA sequences from the bacterial chromosomes through recombineering. This chapter describes a successfully applied protocol and aims to be a detailed guide through the steps of generation of targeting vectors through recombineering.


Assuntos
Vetores Genéticos/genética , Animais , Bacteriófagos/genética , Cromossomos Artificiais Bacterianos/genética , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase , Recombinação Genética/genética
5.
Dev Cell ; 16(1): 118-31, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19154723

RESUMO

BubR1 is an essential mitotic checkpoint protein with multiple functional domains. It has been implicated in mitotic checkpoint control, as an active kinase at unattached kinetochores, and as a cytosolic inhibitor of APC/C(Cdc20) activity, as well as in mitotic timing and stable chromosome-spindle attachment. Using BubR1-conditional knockout cells and BubR1 domain mutants, we demonstrate that the N-terminal Cdc20 binding domain of BubR1 is essential for all of these functions, whereas its C-terminal Cdc20-binding domain, Bub3-binding domain, and kinase domain are not. We find that the BubR1 N terminus binds to Cdc20 in a KEN box-dependent manner to inhibit APC/C activity in interphase, thereby allowing accumulation of cyclin B in G(2) phase prior to mitosis onset. Together, our results suggest that kinetochore-bound BubR1 is nonessential and that soluble BubR1 functions as a pseudosubstrate inhibitor of APC/C(Cdc20) during interphase to prevent unscheduled degradation of specific APC/C substrates.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclina B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Animais , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Sobrevivência Celular , Células Cultivadas , Cromossomos/metabolismo , Ciclina B/genética , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Interfase , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fuso Acromático/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...