Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37626882

RESUMO

Abnormalities at any stage of trophoblast development may result in pregnancy-related complications. Many of these adverse outcomes are discovered later in pregnancy, but the underlying pathomechanisms are constituted during the first trimester. Acquiring developmentally relevant material to elucidate the disease mechanisms is difficult. Human pluripotent stem cell (hPSC) technology can provide a renewable source of relevant cells. BMP4, A83-01, and PD173074 (BAP) treatment drives trophoblast commitment of hPSCs toward syncytiotrophoblast (STB), but lacks extravillous trophoblast (EVT) cells. EVTs mediate key functions during placentation, remodeling of uterine spiral arteries, and maintenance of immunological tolerance. We optimized the protocol for a more efficient generation of HLA-Gpos EVT-like trophoblasts from primed hiPSCs. Increasing the concentrations of A83-01 and PD173074, while decreasing bulk cell density resulted in an increase in HLA-G of up to 71%. Gene expression profiling supports the advancements of our treatment regarding the generation of trophoblast cells. The reported differentiation protocol will allow for an on-demand access to human trophoblast cells enriched for HLA-Gpos EVT-like cells, allowing for the elucidation of placenta-related disorders and investigating the immunological tolerance toward the fetus, overcoming the difficulties in obtaining primary EVTs without the need for a complex differentiation pathway via naïve pluripotent or trophoblast stem cells.


Assuntos
Antígenos HLA-G , Células-Tronco Pluripotentes Induzidas , Feminino , Gravidez , Humanos , Trofoblastos , Diferenciação Celular
2.
Transpl Immunol ; 61: 101291, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32330566

RESUMO

Belatacept, Nulojix®, inhibits the interaction of CD28 on naïve T cells with B7.1/B7.2 (CD80/86) on antigen presenting cells, leading to T cell hyporesponsiveness and anergy and is approved as immunosuppressive drug in kidney transplantation. Due to its specificity for B7.1/2 molecules, side effects are reduced compared to other immunosuppressive drugs like calcineurin- and mTOR-inhibitors. Kidney transplant recipients under Belatacept-based immunosuppression presented with superior renal function and similar graft survival seven years after transplantation compared to cyclosporine treatment. However, de novo Belatacept-based immunosuppression was associated with increased risk of early rejections and viral (EBV) infections in clinical trials, especially in EBV-naïve patients. Since there is no vaccination against EBV infection available, EBV-derived virus like particles (EBV-VLPs) are currently developed as vaccine strategy. Here, we investigated the immunosuppressive effects of Belatacept compared to calcineurin- and mTOR inhibitors on allo- versus virus-specific T cells and the potency of EBV-VLPs to induce virus-specific T cell responses in vitro. Using PBMC of kidney recipients and healthy donors, we could demonstrate selective inhibition of allo-specific de novo T cell responses but not virus-specific memory T cell responses by Belatacept, as measured by IFN-γ production. In contrast, calcineurin inhibitors suppressed IFN-γ production of virus-specific memory CD8+ T cells completely. These results experimentally confirm the concept that Belatacept blocks CD28-mediated costimulation in newly primed naïve T cells but does not interfere with memory T cell responses being already independent from CD28-mediated costimulation. Additionally, we could show that EBV-VLPs induce a significant though weak IFN-γ-mediated T cell response in vitro in both kidney recipients and healthy donors. In summary, we demonstrated that immunosuppression of kidney recipients by Belatacept may primarily suppress de novo allo-specific T cell responses sparing virus-specific memory T cells. Moreover, EBV-VLPs could represent a novel strategy for vaccination of immunocompromised renal transplant recipients to prevent EBV reactivation especially under Belatacept-based immunosuppression.


Assuntos
Abatacepte/uso terapêutico , Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/fisiologia , Fatores Imunológicos/uso terapêutico , Transplante de Rim , Linfócitos T/imunologia , Viroses/imunologia , Adolescente , Adulto , Idoso , Antígenos Virais/imunologia , Feminino , Voluntários Saudáveis , Humanos , Memória Imunológica , Isoantígenos/imunologia , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Transplantados , Vacinas de Partículas Semelhantes a Vírus , Vírion/metabolismo , Adulto Jovem
3.
Biotechnol Rep (Amst) ; 18: e00249, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29876300

RESUMO

Biologically active human bone morphogenetic protein-4 (hBMP-4) was successfully produced in a prokaryotic host. For this aim, hBMP-4 cDNA was cloned in Escherichia coli (E. coli) and the protein was produced in a non-active aggregated form. After washing and solubilization, in vitro refolding of the rhBMP-4 monomer was performed using rapid dilution. In this study, different refolding conditions were tested for the dimerization of rhBMP-4 by one-factor-at-a-time variation. The dimerization process was found to be sensitive to pH, protein concentration and the presence of aggregation suppressors. In contrast, redox conditions and ionic strength did not impact refolding as expected. The dimer was separated from the remaining monomer, aggregates and host cell contaminants in a single step using cation-exchange membrane chromatography. The rhBMP-4 dimer produced in E. coli was biologically active as demonstrated by its capability to induce trophoblast differentiation and primitive streak induction of human pluripotent stem cells (hPSCs).

4.
Stem Cell Res ; 30: 117-121, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29852468

RESUMO

Caudal-type homeobox 2 (CDX2) transcription factor is an important marker for early trophoblast lineages and intestinal epithelium. Due to its nuclear expression the immunostaining and sorting of viable CDX2pos cells is not possible. In this paper we report the generation and describe key characteristics of a CDX2Venus knock-in reporter hiPSC-cell line (MHHi007-A-1) which can serve as an in vitro tool to study human trophoblast and intestinal differentiation.


Assuntos
Fator de Transcrição CDX2/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular , Feminino , Humanos , Recém-Nascido , Trofoblastos/citologia , Trofoblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...