Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(45): 31541-31553, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37908657

RESUMO

Two azo dyes, (E)-3-(benzo[d]thiazol-2-yldiazenyl)-4-hydroxy-2H-chromen-2-one (3CBD) and (E)-4-hydroxy-3-(quinolin-2-yldiazenyl)-2H-chromen-2-one (3CQD), were designed and synthesized using facile methods. The structures were validated through FTIR and NMR spectroscopy. The photophysical property analyses were further studied using UV-Vis and fluorescence spectrophotometers. Consequently, the absorption and emission spectra of 3CBD confirmed its selectivity of Hg2+ and turn-off response to Fe3+. On the other hand, the absorption spectra analysis of 3CQD demonstrated selectivity in the presence of Hg2+. The colorimetric investigations demonstrated a significant visual response specifically for Hg2+, enabling real-time analysis in the corresponding solutions. The presence of other coexisting metal ions does not interfere with the detection of the target metal ion. The fluorescence studies of the two probes revealed that 3CBD was highly fluorescent, which was significantly quenched by Fe3+, upon excitation at 340 nm. Utilizing Job plot analyses, it was determined that the complexes 3CBD-Hg2+ and 3CQD-Hg2+ exhibit a binding stoichiometry of 1 : 1. The association constants for these complexes were measured to be 7.48 × 105 and 9.12 × 105 M-1, respectively, indicating a strong association between both probes and their respective metal ions. Both chemosensors exhibited comparable limits of detection (LOD) and limits of quantification (LOQ) of 0.03 µM and 0.10 µM, respectively. Reversible studies confirmed that only chemosensor 3CQD could serve as a secondary sensor for EDTA. The theoretical studies calculated using Density Functional Theory (DFT) program at B3LYP/6-31G** (Spartan '10 package) level.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 289: 122202, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36521339

RESUMO

A new tailor-made azo dye of coumarin connected to phenolic derivative is presented herein. Azo-hydrazone tautomerism in aqueous solution of the dye was observed and studied using spectroscopic assays such as 1H NMR, absorption and emission assays, and theoretical studies. Tautomerism was attributed to the presence of a labile phenolic hydrogen in the ortho position to the azo functionality and the hydrazone was found to be the more dominant tautomer. Influence of metal ions on the azo-hydrazone chemical equilibrium and how the accompanying colour and spectroscopic changes can be exploited for various functions, especially the detection and quantification of Cu2+ in aqueous environments was explored. The presence of Cu2+ affects the azo-hydrazone equilibrium resulting in visual appearance and spectroscopic changes and the likely binding sites for Cu2+ were evaluated. Cu2+ pushes the azo-hydrazone equilibrium towards the more conjugated form and the presence of other metal ions does not have any perceivable impact on this mechanism. The dye showed potential applications as a sensor in colorimetric and spectroscopic detection and quantification of Cu2+ in domestic and environmental water samples, photo-imprinting and as a logic gate. The limits of detection (LOD) and quantification (LOQ) for Cu2+ were found to be 0.0779 mg/L and 0.236 mg/L, respectively, much lower than the World Health Organization (WHO) guideline limit for Cu2+ levels in drinking water.


Assuntos
Água Potável , Hidrazonas , Hidrazonas/química , Compostos Azo/química , Íons , Colorimetria/métodos , Cumarínicos , Cobre/análise
3.
J Fluoresc ; 33(1): 267-285, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36413253

RESUMO

Pollution caused by the release of toxic heavy metals into the environment by industrial and farming processes has been regarded as a major problem worldwide. This has attracted a great deal of attention into restoration and remediation. Mercury is classified as a toxic heavy metal which has posed significant challenges to public and environmental health. To date, conventional methods for mercury detection rely on expensive, destructive, complex, and highly specialized methods. Evidently, there is a need to develop systems capable of easily identifying and quantifying mercury within the environment. In this way, organic-based colorimetric chemosensors are gaining increasing popularity due to their high sensitivity, selectivity, cost-effectiveness, ease of design, naked-eye, and on-site detection ability. The formation of coumarin-azo derivative AD1 was carried out by a conventional diazotization reaction with coumarin-amine 1c and N,N-dimethylaniline. Sensor AD1 displayed remarkable visual colour change upon mercury addition with appreciable selectivity and sensitivity. The detection limit was calculated as 0.24 µM. Additionally, the reversible nature of AD1 allowed for the construction of an IMPLICATION type logic gate and Molecular Keypad Lock. Chemosensor AD1 displayed further sensing applications in real-world water samples and towards on-site assay methods. Herein, we describe a coumarin-derived chemosensor bearing an azo (N = N) functionality for the colorimetric and quantitative determination of Hg2+ in organic and aqueous media.

4.
J Fluoresc ; 30(5): 985-997, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32583123

RESUMO

A novel colorimetric and fluorometric method based on coumarin as signalling unit was developed for Hg2+ recognition and quantification. Initially, the alkyne functionality was incorporated into a coumarin system and the resulting molecule showed higher specificity and sensitivity for Hg2+ over other cations in both absorption and emission sensing assays. The Hg2+ recognition was detected as visible colour change from colourless to yellow and as fluorescence quenching. The colour change was assigned to the increased intramolecular charge transfer (ICT) in the signalling unit upon Hg2+ binding whereas a decline in the fluorescence intensity was ascribed to the heavy atom effect from Hg2+. In order to generate a material with high sensing performance level, alkyne-functionalized molecule was hosted into a polymeric material. The resulting functionalized polymer showed higher sensitivity and selectivity for Hg2+ over its corresponding coumarin molecule. The investigation of the possible binding modes for Hg2+ suggested both alkyne and triazole functionalities as potential binding sites for Hg2+. The limit of detection (LOD) and limit of quantification (LOQ) of the proposed method were evaluated and values less than a recommended maximum level of Hg2+contaminant in drinking water (2.00 µg/L) were obtained (LOD = 0.44 µg/L and LOQ = 1.33µg/L). The real-life application of the method was investigated using natural water samples containing Hg2+ levels equivalent to the maximum tolerable concentration of Hg2+ in drinking water. The outcomes suggested that the method could be used in the sensing and determination of Hg2+ level of contaminant in the environment.


Assuntos
Colorimetria/métodos , Cumarínicos/química , Corantes Fluorescentes/química , Fluorometria/métodos , Mercúrio/análise , Poluentes Químicos da Água/análise , Água Potável/química
5.
Sensors (Basel) ; 17(9)2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28867764

RESUMO

A novel fluorescent polymer with pendant triazolyl coumarin units was synthesized through radical polymerization. The polymer showed reasonable sensitivity and selectivity towards Cu2+ in acetonitrile in comparison to other tested metal ions with a significant quenching effect on fluorescence and blue shifting in the range of 20 nm. The blue shift was assigned to the conformation changes of the diethylamino group from the coumarin moiety which led to planarization of the triazolyl coumarin units. The possible binding modes for Cu2+ towards the polymer were determined through the comparison of the emission responses of the polymer, starting vinyl monomer and reference compound, and the triazole ring was identified as one of the possible binding sites for Cu2+. The detection limits of the polymer and vinyl monomer towards Cu2+ were determined from fluorescence titration experiments and a higher sensitivity (35 times) was observed for the polymer compared with its starting monomer.

6.
Molecules ; 17(12): 14186-204, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23201639

RESUMO

Iodine-methanol mediated oxidative-aromatization of 2-aryl-6,8-dibromo-2,3-dihydroquinolin-4(1H)-ones afforded the corresponding 2-aryl-6,8-dibromo-4-methoxy-quinolines in high yield and purity. The isomeric 1-(2-amino-3,5-dibromophenyl)-3-aryl-2-propen-1-ones reacted with iodine in methanol afford in a single pot operation the corresponding 2-aryl-6,8-dibromo-4-methoxyquinoline (major) and 2-aryl-6,8-dibromoquinolin-4(1H)-one (minor) products that were separated in sequence by column chromatography on silica gel. Suzuki-Miyaura cross-coupling of the 6,8-dibromo-4-methoxyquinoline derivatives with excess arylvinylboronic acids afforded the corresponding 2-aryl-6,8-bis(2-arylethenyl)-4-methoxyquinolines. The absorption and fluorescence properties of these compounds were also determined.


Assuntos
Fluorescência , Iodo/química , Quinolinas , Absorção , Estrutura Molecular , Oxirredução , Quinolinas/síntese química , Quinolinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...