Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 64(3): 035010, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30566923

RESUMO

To evaluate the benefit of adding CT imaging to the simulation process of clip-based proton therapy of ocular melanomas. For thirty ocular melanoma cases, the clip position in the eye model was determined based on orthogonal radiographs as well as on a CT image set. The geometrical shift of the clips between the standard simulation process and standard simulation process with addition of CT imaging (CT-guided) was determined. The dosimetric impact was evaluated by developing treatment plans based on both the standard-process model and the CT-guided model. In 40% of the studied cases, the difference in clip position between eye models created with and without CT was less than 0.5 mm. This difference was more than 1 mm in 17% of cases. The dosimetric impact of shifts below 1 mm was low because these shifts did not exceed the planning margins. For the four cases with a shift of more than 1 mm a reduction in target coverage (ΔV99%) of -3% to -6% was observed. Changes in macula and optic-disc mean dose of up to 16% and 35% of the prescribed dose were seen when these structures abutted the target. Adding CT imaging to the simulation process is beneficial in select cases where discrepancies between the eye model and ophthalmology measurements occur or where a critical structure is located close to the target and improved localization accuracy is wanted. For the majority of patients, addition of CT imaging does not result in quantifiable changes in dosimetry. Nevertheless, CT imaging is a valuable tool in the quality control of the modeling and treatment-planning process of clip-based eye treatments.


Assuntos
Neoplasias Oculares/diagnóstico por imagem , Neoplasias Oculares/radioterapia , Melanoma/diagnóstico por imagem , Melanoma/radioterapia , Terapia com Prótons/métodos , Radioterapia Guiada por Imagem/métodos , Tomografia Computadorizada por Raios X , Humanos , Terapia com Prótons/instrumentação , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem/instrumentação
2.
Med Phys ; 41(1): 011707, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24387499

RESUMO

PURPOSE: A commercial proton eyeline has been developed to treat ocular disease. Radiotherapy of intraocular lesions (e.g., uveal melanoma, age-related macular degeneration) requires sharp dose gradients to avoid critical structures like the macula and optic disc. A high dose rate is needed to limit patient gazing times during delivery of large fractional dose. Dose delivery needs to be accurate and predictable, not in the least because current treatment planning algorithms have limited dose modeling capabilities. The purpose of this paper is to determine the dosimetric properties of a new proton eyeline. These properties are compared to those of existing systems and evaluated in the context of the specific clinical requirements of ocular treatments. METHODS: The eyeline is part of a high-energy, cyclotron-based proton therapy system. The energy at the entrance of the eyeline is 105 MeV. A range modulator (RM) wheel generates the spread-out Bragg peak, while a variable range shifter system adjusts the range and spreads the beam laterally. The range can be adjusted from 0.5 up to 3.4 g/cm(2); the modulation width can be varied in steps of 0.3 g/cm(2) or less. Maximum field diameter is 2.5 cm. All fields can be delivered with a dose rate of 30 Gy/min or more. The eyeline is calibrated according to the IAEA TRS-398 protocol using a cylindrical ionization chamber. Depth dose distributions and dose/MU are measured with a parallel-plate ionization chamber; lateral profiles with radiochromic film. The dose/MU is modeled as a function of range, modulation width, and instantaneous MU rate with fit parameters determined per option (RM wheel). RESULTS: The distal fall-off of the spread-out Bragg peak is 0.3 g/cm(2), larger than for most existing systems. The lateral penumbra varies between 0.9 and 1.4 mm, except for fully modulated fields that have a larger penumbra at skin. The source-to-axis distance is found to be 169 cm. The dose/MU shows a strong dependence on range (up to 4%/mm). A linear increase in dose/MU as a function of instantaneous MU rate is observed. The dose/MU model describes the measurements with an accuracy of ± 2%. Neutron dose is found to be 146 ± 102 µSv/Gy at the contralateral eye and 19 ± 13 µSv/Gy at the chest. CONCLUSIONS: Measurements show the proton eyeline meets the requirements to effectively treat ocular disease.


Assuntos
Neoplasias Oculares/radioterapia , Terapia com Prótons/métodos , Humanos , Nêutrons/uso terapêutico , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...