Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Manipulative Physiol Ther ; 39(4): 294-303, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27059249

RESUMO

OBJECTIVES: Axial rotation of the torso is commonly used during manipulation treatment of low back pain. Little is known about the effect of these positions on disc morphology. Rotation is a three-dimensional event that is inadequately represented with planar images in the clinic. True quantification of the intervertebral gap can be achieved with a disc height distribution. The objective of this study was to analyze disc height distribution patterns during torsion relevant to manipulation in vivo. METHODS: Eighty-one volunteers were computed tomography-scanned both in supine and in right 50° rotation positions. Virtual models of each intervertebral gap representing the disc were created with the inferior endplate of each "disc" set as the reference surface and separated into 5 anatomical zones: 4 peripheral and 1 central, corresponding to the footprint of the annulus fibrosus and nucleus pulposus, respectively. Whole-disc and individual anatomical zone disc height distributions were calculated in both positions and were compared against each other with analysis of variance, with significance set at P < .05. RESULTS: Mean neutral disc height was 7.32 mm (1.59 mm). With 50° rotation, a small but significant increase to 7.44 mm (1.52 mm) (P < .0002) was observed. The right side showed larger separation in most levels, except at L5/S1. The posterior and right zones increased in height upon axial rotation of the spine (P < .0001), whereas the left, anterior, and central decreased. CONCLUSIONS: This study quantified important tensile/compressive changes disc height during torsion. The implications of these mutually opposing changes on spinal manipulation are still unknown.


Assuntos
Disco Intervertebral/diagnóstico por imagem , Dor Lombar/fisiopatologia , Vértebras Lombares/diagnóstico por imagem , Manipulação da Coluna , Torção Mecânica , Adulto , Fenômenos Biomecânicos , Dor Crônica/diagnóstico por imagem , Dor Crônica/fisiopatologia , Humanos , Imageamento Tridimensional , Disco Intervertebral/fisiologia , Disco Intervertebral/fisiopatologia , Dor Lombar/diagnóstico por imagem , Vértebras Lombares/fisiologia , Vértebras Lombares/fisiopatologia , Pessoa de Meia-Idade , Postura/fisiologia , Rotação , Tomografia Computadorizada por Raios X , Adulto Jovem
2.
Biofabrication ; 6(1): 015003, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24429508

RESUMO

This study tested the accuracy of tissue engineering scaffold rendering via the continuous digital light processing (cDLP) light-based additive manufacturing technology. High accuracy (i.e., <50 µm) allows the designed performance of features relevant to three scale spaces: cell-scaffold, scaffold-tissue, and tissue-organ interactions. The biodegradable polymer poly (propylene fumarate) was used to render highly accurate scaffolds through the use of a dye-initiator package, TiO2 and bis (2,4,6-trimethylbenzoyl)phenylphosphine oxide. This dye-initiator package facilitates high accuracy in the Z dimension. Linear, round, and right-angle features were measured to gauge accuracy. Most features showed accuracies between 5.4-15% of the design. However, one feature, an 800 µm diameter circular pore, exhibited a 35.7% average reduction of patency. Light scattered in the x, y directions by the dye may have reduced this feature's accuracy. Our new fine-grained understanding of accuracy could be used to make further improvements by including corrections in the scaffold design software. Successful cell attachment occurred with both canine and human mesenchymal stem cells (MSCs). Highly accurate cDLP scaffold rendering is critical to the design of scaffolds that both guide bone regeneration and that fully resorb. Scaffold resorption must occur for regenerated bone to be remodeled and, thereby, achieve optimal strength.


Assuntos
Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Células da Medula Óssea/citologia , Regeneração Óssea , Adesão Celular , Corantes/química , Cães , Fumaratos , Humanos , Luz , Células-Tronco Mesenquimais/citologia , Polipropilenos , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...