Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Qual ; 50(1): 110-121, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33300140

RESUMO

Roadside vegetation provides a multitude of ecosystem services, including pollutant remediation, runoff reduction, wildlife habitat, and aesthetic scenery. Establishment of permanent vegetation along paved roads after construction can be challenging, particularly within 1 m of the pavement. Adverse soil conditions could be one of the leading factors limiting roadside vegetation growth. In this study, we assessed soil physical and chemical properties along a transect perpendicular to the road at six microtopographic positions (road edge, shoulder, side slope, ditch, backslope, and field edge) along two highway segments near Beaver Crossing and Sargent, NE. At the Beaver Crossing site, Na concentration was 81 times, exchangeable Na 66 times, and cone index (compaction parameter) six times higher at the road-edge position (closest to the paved road and with sparse vegetation) compared to positions with abundant vegetation (ditch or field edge). At the Sargent site, Na concentration was 111 times, exchangeable Na 213 times, and cone index up to two times higher at the road-edge position compared with ditch or field-edge positions. Likewise, electrical conductivity was higher and macroaggregation and water infiltration were lower at the road edge than at the ditch or field-edge positions. Soil properties improved with increasing distance from the road. Exchangeable Na percentage and cone index at the road-edge position exceeded threshold levels for the growth of sensitive plants. Thus, high Na concentration and increased compaction at the road edge appear to be the leading soil properties limiting vegetation establishment along Nebraska highways.


Assuntos
Ecossistema , Solo , Nebraska , Plantas
2.
Environ Entomol ; 50(1): 222-231, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33184669

RESUMO

Dung beetles (Coleoptera: Scarabaeoidea) serve a significant role in regulating ecosystem services on rangelands. However, the influence of grazing management on dung beetle communities remains largely unknown. The purpose of this study was to investigate dung beetle abundance and diversity throughout the grazing season in the Nebraska Sandhills Ecoregion. Grazing treatments included: continuous grazing (CONT), low-stocking rotational grazing (LSR), high-stocking rotational grazing (HSR), and no grazing (NG). The abundance and diversity of dung beetles were measured in the 2014 and 2015 grazing seasons using dung-baited pitfall traps. Dung beetle abundance for each grazing treatment was characterized through four indices: peak abundance, species richness, Simpson's diversity index, and Simpson's evenness. A total of 4,192 dung beetles were collected through both years of trapping in this study. Peak abundance and species richness were greater in grazed treatments when compared to NG in both years. Peak abundance in the HSR was 200% (2014) and 120% (2015) higher than in the LSR. Species richness in the HSR was 70% (2014) and 61% (2015) higher than in the LSR, and 89% (2014) and 133% (2015) higher than in CONT. Simpson's diversity index was lower in the NG and CONT treatments when compared to the LSR or HSR treatments for both years. We conclude that rotational grazing, regardless of stocking density, promoted dung beetle abundance and diversity within the Nebraska Sandhills Ecoregion.


Assuntos
Besouros , Ecossistema , Animais , Biodiversidade , Fezes , Nebraska , Estações do Ano
3.
J Environ Qual ; 48(3): 537-548, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31180435

RESUMO

Soil fauna plays a critical role in various ecosystem processes, but empirical data measuring its impact on greenhouse gas (GHG) emissions from rangelands are limited. We quantified the effects of dung beetles on in situ CO, CH, and NO emissions from simulated cattle dung deposits. Soil in meadows of the semiarid Nebraska Sandhills was treated with three treatments (dung pats with exposure and without exposure to dung beetles, and a no dung control). A closed-chamber method was used to measure GHG fluxes at 0, 1, 2, 3, 7, 10, 14, 21, 28, and 56 d after dung placement in the early season (June-August) and late season (July-September) in 2014 and 2015. The greatest dung beetle abundance was 6 ± 2 beetles per quarter pat on Day 7; the abundance decreased to <2 ± 0.6 on Day 14 and 28 and zero on Day 56. Dung beetles increased fluxes of CO by 0.2 g C d m, NO by 0.4 mg N d m (only in late season 2015), and CH by 0.2 mg C d m. These increases were due to beetle-made macropores that facilitated gas transport in wet dung (initial moisture = 4.6 g g on a dry-weight basis) within 7 d after dung placement. Seasonal environmental differences resulted in greater CO, NO, and CH fluxes in the early season than in the late season. This study concluded that dung beetles increased GHG fluxes from early- and late-season dung deposits on meadows of the semiarid Nebraska Sandhills.


Assuntos
Besouros , Gases de Efeito Estufa , Animais , Bovinos , Ecossistema , Pradaria , Nebraska
4.
J Environ Qual ; 47(3): 554-561, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29864181

RESUMO

As a precautionary principle, the National Pollutant Discharge Elimination System (NPDES) permit establishes that the primary pollutant in concrete grinding residue (CGR) is its alkalinity and restricts CGR roadside discharge to 11 Mg ha or the agronomic liming rate, whichever is lower. We evaluated the effect of CGR application on roadside soil chemical properties, existing vegetation, and rainfall runoff. Five CGR rates (0, 11, 22, 45, and 90 dry Mg ha) were tested on roadsides slopes at two different locations in eastern Nebraska. Vegetation, soil, and runoff characteristics were evaluated before CGR application and 30 d and 1 yr after CGR application. Soil pH of control plots averaged 8.3 and 8.5 for each site respectively, across depths and slope positions, thus not requiring any liming for agronomic purposes. Soil electrical conductivity (EC, 1:1) averages of control plots were 0.79 and 1.24 dS m across depths and slope positions. In the short term (30 d) the highest CGR application affected the 0- to 7.5-cm soil depth by increasing soil extractable Ca (21 and 25% for each site, respectively), soil pH (0.2, south site), and soil EC (0.2 dS m) compared with the control. However, these changes in soil did not persist 1 yr after CGR application. The pH buffering capacity of soil prevented post-CGR-application pH from exceeding 8.9, even at the highest application rate. Application of CGR did not produce any differences in biomass production, botanical composition, and runoff characteristics at either site. From our study, CGR up to ?90 dry Mg ha-about the amount produced during diamond grinding operations-can be one-time applied to roadside soils of similar characteristics on already established vegetation.


Assuntos
Materiais de Construção , Plantas , Poluentes do Solo , Biomassa , Nebraska , Solo
5.
J Environ Qual ; 44(3): 903-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26024270

RESUMO

Patch burning can be a potential management tool to create grassland heterogeneity and enhance forage productivity and plant biodiversity, but its impacts on soil and environment have not been widely documented. In summer 2013, we studied the effect of time after patch burning (4 mo after burning [recently burned patches], 16 mo after burning [older burned patches], and unburned patches [control]) on vegetative cover, water erosion, and soil properties on a patch-burn experiment established in 2011 on a Yutan silty clay loam near Mead, NE. The recently burned patches had 29 ± 8.0% (mean ± SD) more bare ground, 21 ± 1.4% less canopy cover, and 40 ± 11% less litter cover than older burned and unburned patches. Bare ground and canopy cover did not differ between the older burned and unburned patches, indicating that vegetation recovered. Runoff depth from the older burned and recently burned patches was 2.8 times (19.6 ± 4.1 vs. 7.1 ± 3.0 mm [mean ± SD]) greater than the unburned patches. The recently burned patches had 4.5 times greater sediment loss (293 ± 89 vs. 65 ± 56 g m) and 3.8 times greater sediment-associated organic C loss (9.2 ± 2.0 vs. 2.4 ± 1.9 g m) than the older burned and unburned patches. The recently burned patches had increased daytime soil temperature but no differences in soil compaction and structural properties, dissolved nutrients, soil C, and total N concentration relative to older burned and unburned patches. Overall, recently burned patches can have reduced canopy and litter cover and increased water erosion, but soil properties may not differ from older burn or unburned patches under the conditions of this study.

6.
J Environ Qual ; 35(3): 815-23, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16585624

RESUMO

Differences in particle size distribution between runoff standards and unknown samples affect the accuracy of estimation of total suspended solids (TSS) concentration using the nephelometric turbidity (NTU) method. The objective was to quantify the effects of a sucrose solution as suspending medium and contrasting particle size distribution on nephelometric turbidity and accuracy of TSS estimation. Nineteen benchmark soils varying in texture and color were divided into particle size distribution of <250 and <2000 microm. Soils from these two aggregate classes were then made into suspension ranging from 0.2 to 15 g L-1 using distilled deionized water. Runoff suspensions ranging from 0.2 to 21 g L-1 were also collected from different watersheds. Turbidity of soil and runoff suspensions was measured in sucrose solution and in distilled deionized water. The sucrose solution density ranged from 1.10 to 1.30 kg L-1. Increasing sucrose solution density decreased turbidity. The TSS concentration was most sensitive to changes in turbidity with the 1.30 kg L-1 sucrose solution. Using the 1.30 kg L-1 sucrose solution, particle size bias and error of TSS estimates were decreased by at least 20% compared to distilled deionized water. Reduction in refraction index differences between the suspended particles and sucrose solution combined with reduced particle settling and reduced Brownian motion resulted in dampening the effects of particle size distribution. We propose a sucrose solution of 1.30 kg L-1 as a better suspending medium to dampen the effect of particle size distribution and thus improve suspension TSS concentration estimation.


Assuntos
Nefelometria e Turbidimetria/métodos , Água/química , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA