Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Imaging Biol ; 23(3): 340-349, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33156495

RESUMO

PURPOSE: Metastatic breast cancer is the second leading cause of cancer-related death in women. The 5-year survival rate for metastatic breast cancer has remained near 26.9 % for over a decade. The recruitment of hematopoietic stem cells with high expression of the vascular endothelial growth factor receptor 1 (VEGFR-1) has been implicated in early stages of metastasis formation. We propose the use of an 18F-labeled single-chain version of VEGF121, re-engineered to be selective for VEGFR-1 (scVR1), as a positron emission tomography (PET) imaging agent to non-invasively image early-stage metastases. PROCEDURES: scVR1 was 18F-labeled via a biorthogonal click reaction between site-specifically trans-cyclooctene functionalized scVR1 and an Al18F labeled tetrazine-NODA (1,4,7-triazacyclononane-1,4-diiacetic acid). The [18F]AlF-NODA-scVR1 was purified using a PD10 column and subsequently analyzed on HPLC to determine radiochemical purity. Animal experiments were performed in 6-8-week-old female BALB/c mice bearing orthotopic primary 4T1 breast tumors or 4T1 metastatic lesions. The [18F]AlF-NODA-scVR1 tracer was administered via tail vein injection; PET imaging and ex vivo analysis was performed 2 h post-injection. RESULTS: The [18F]AlF-NODA-scVR1 was prepared with a 98.2 ± 1.5 % radiochemical purity and an apparent molar activity of 7.5 ± 1.2 GBq/µmol. The specific binding of scVR1 to VEGFR-1 was confirmed via bead-based assay. The ex vivo biodistribution showed tumor uptake of 3.5 ± 0.5 % ID/g and was readily observable in PET images. Metastasis formation was detected with [18F]AlF-NODA-scVR1 tracer showing colocalization with bioluminescent imaging as well as ex vivo autoradiography and immunofluorescent staining of VEGFR-1. CONCLUSIONS: The diagnostic capabilities of the [18F]AlF-NODA-scVR1 PET tracer was confirmed in both orthotopic and metastatic murine cancer models. These results support the potential use of [18F]AlF-NODA-scVR1 as a PET tracer that could image metastases, providing clinicians with an additional tool to assess a patient's need for adjuvant therapies.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Radioisótopos de Flúor/química , Células-Tronco Hematopoéticas/metabolismo , Neoplasias Pulmonares/diagnóstico por imagem , Mutação , Metástase Neoplásica , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Compostos Heterocíclicos com 1 Anel/química , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Tomografia por Emissão de Pósitrons
2.
ACS Appl Mater Interfaces ; 12(46): 51135-51147, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-32988209

RESUMO

Colloidal perovskite barium titanate (BaTiO3, or BT) nanoparticles (NPs), conventionally used for applications in electronics, can also be considered for their potential as biocompatible computed tomography (CT) contrast agents. NPs of BT produced by traditional solid-state methods tend to have broad size distributions and poor dispersibility in aqueous media. Furthermore, uncoated BT NPs can be cytotoxic because of leaching of the heavy metal ion, Ba2+. Here, we present and compare three approaches for surface modification of BT NPs (8 nm) synthesized by the gel collection method to improve their aqueous stability and dispersibility. The first approach produced citrate-capped BT NPs that exhibited extremely high aqueous dispersibility (up to 50 mg/mL) and a small hydrodynamic size (11 nm). Although the high dispersibility was found to be pH-dependent, such aqueous stability sufficiently enabled a feasibility analysis of BT NPs as CT contrast agents. The second approach, a core/shell design, aimed to encapsulate BT nanoaggregates with a silica layer using a modified Stöber method. A cluster of 7-20 NPs coated with a thick layer (20-100 nm) of SiO2 was routinely observed, producing larger NPs in the 100-200 nm range. A third approach was developed using a reverse-microemulsion method to encapsulate a single BT core within a thin (10 nm) silica layer, with an overall particle size of 29 nm. The -OH groups on the silica layer readily enabled surface PEGylation, allowing the NPs to remain highly stable in saline solutions. We report that the silica-coated BT NPs in both methods exhibited a low level of Ba2+ leaching (≤3% of total barium in NPs) in phosphate-buffered saline for 48 h compared to the unmodified BT NPs (14.4%).


Assuntos
Compostos de Bário/química , Meios de Contraste/química , Nanopartículas Metálicas/química , Titânio/química , Água/química , Animais , Compostos de Cálcio/química , Linhagem Celular Tumoral , Ácido Cítrico/química , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Neoplasias/diagnóstico por imagem , Óxidos/química , Tamanho da Partícula , Polietilenoglicóis/química , Dióxido de Silício/química , Propriedades de Superfície , Transplante Heterólogo , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...