Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 37(6): 98, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33969436

RESUMO

This work was mainly about the understanding of how urea and ammonium affect growth, glucose consumption and ethanol production of S. cerevisiae, in particular regarding the basic physiology of cell. The basic physiology of cell included intracellular pH, ATP, NADH and enzyme activity. Results showed that fermentation time was reduced by 19% when using urea compared with ammonium. The maximal ethanol production rate using urea was 1.14 g/L/h, increasing 30% comparing with the medium prepared with ammonium. Moreover, urea could decrease the synthesis of glycerol from glucose by 26% comparing with ammonium. The by-product of acetic acid yields decreased from 40 mmol/mol of glucose (with urea) to 24 mmol/mol of glucose (with ammonium). At the end of ethanol fermentation, cell number and pH were greater with urea than ammonium. Comparing with urea, ammonium decreased the intracellular pH by 14% (from 7.1 to 6.1). Urease converting urea into ammonia resulted in a more than 50% lower of ATP when comparing with ammonium. The values of NADH/DCW were 0.21 mg/g and 0.14 mg/g respectively with urea and ammonium, suggesting a 33% lower NADH. The enzyme activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was 0.0225 and 0.0275 U/mg protein respectively with urea and ammonium, which was consistent with the yields of glycerol.


Assuntos
Compostos de Amônio/química , Etanol/química , Saccharomyces cerevisiae/fisiologia , Ureia/química , Trifosfato de Adenosina/metabolismo , Fermentação , Proteínas Fúngicas/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Glicerol/química , Concentração de Íons de Hidrogênio , NAD/metabolismo , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...