Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 26(12): 2043-2055, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37788337

RESUMO

Species distributions are conventionally modelled using coarse-grained macroclimate data measured in open areas, potentially leading to biased predictions since most terrestrial species reside in the shade of trees. For forest plant species across Europe, we compared conventional macroclimate-based species distribution models (SDMs) with models corrected for forest microclimate buffering. We show that microclimate-based SDMs at high spatial resolution outperformed models using macroclimate and microclimate data at coarser resolution. Additionally, macroclimate-based models introduced a systematic bias in modelled species response curves, which could result in erroneous range shift predictions. Critically important for conservation science, these models were unable to identify warm and cold refugia at the range edges of species distributions. Our study emphasizes the crucial role of microclimate data when SDMs are used to gain insights into biodiversity conservation in the face of climate change, particularly given the growing policy and management focus on the conservation of refugia worldwide.


Assuntos
Florestas , Microclima , Árvores , Plantas , Biodiversidade , Mudança Climática , Ecossistema
2.
Glob Chang Biol ; 29(11): 2886-2892, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37128754

RESUMO

Microclimate research gained renewed interest over the last decade and its importance for many ecological processes is increasingly being recognized. Consequently, the call for high-resolution microclimatic temperature grids across broad spatial extents is becoming more pressing to improve ecological models. Here, we provide a new set of open-access bioclimatic variables for microclimate temperatures of European forests at 25 × 25 m2 resolution.


Assuntos
Microclima , Árvores , Temperatura , Florestas , Ecossistema
3.
Sci Total Environ ; 821: 153377, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35077798

RESUMO

Increasingly available high-resolution digital elevation models (DEMs) facilitate the use of fine-scale topographic variables as proxies for microclimatic effects not captured by the coarse-grained macroclimate datasets. Species distributions and community assembly rules are, however directly shaped by microclimate and not by topography. DEM-derived topography, sometimes combined with vegetation structure, is thus widely used as a proxy for microclimatic effects in ecological research and conservation applications. However, the suitability of such a strategy has not been evaluated against in situ measured microclimate and species composition. Because bryophytes are highly sensitive to microclimate, they are ideal model organisms for such evaluation. To provide this much needed evaluation, we simultaneously recorded bryophyte species composition, microclimate, and forest vegetation structure at 218 sampling sites distributed across topographically complex sandstone landscape. Using a LiDAR-based DEM with a 1 m resolution, we calculated eleven topographic variables serving as a topographic proxy for microclimate. To characterize vegetation structure, we used hemispherical photographs and LiDAR canopy height models. Finally, we calculated eleven microclimatic variables from a continuous two-year time- series of air and soil temperature and soil moisture. To evaluate topography and vegetation structure as substitutes for the ecological effect of measured microclimate, we partitioned the variation in bryophyte species composition and richness explained by microclimate, topography, and vegetation structure. In situ measured microclimate was clearly the most important driver of bryophyte assemblages in temperate coniferous forests. The most bryophyte-relevant variables were growing degree days, maximum air temperature, and mean soil moisture. Our results thus showed that topographic variables, even when derived from high-resolution LiDAR data and combined with in situ sampled vegetation structure, cannot fully substitute effects of in situ measured microclimate on forest bryophytes.


Assuntos
Briófitas , Microclima , Florestas , Solo , Temperatura , Árvores
4.
Glob Chang Biol ; 27(23): 6307-6319, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34605132

RESUMO

Ecological research heavily relies on coarse-gridded climate data based on standardized temperature measurements recorded at 2 m height in open landscapes. However, many organisms experience environmental conditions that differ substantially from those captured by these macroclimatic (i.e. free air) temperature grids. In forests, the tree canopy functions as a thermal insulator and buffers sub-canopy microclimatic conditions, thereby affecting biological and ecological processes. To improve the assessment of climatic conditions and climate-change-related impacts on forest-floor biodiversity and functioning, high-resolution temperature grids reflecting forest microclimates are thus urgently needed. Combining more than 1200 time series of in situ near-surface forest temperature with topographical, biological and macroclimatic variables in a machine learning model, we predicted the mean monthly offset between sub-canopy temperature at 15 cm above the surface and free-air temperature over the period 2000-2020 at a spatial resolution of 25 m across Europe. This offset was used to evaluate the difference between microclimate and macroclimate across space and seasons and finally enabled us to calculate mean annual and monthly temperatures for European forest understories. We found that sub-canopy air temperatures differ substantially from free-air temperatures, being on average 2.1°C (standard deviation ± 1.6°C) lower in summer and 2.0°C higher (±0.7°C) in winter across Europe. Additionally, our high-resolution maps expose considerable microclimatic variation within landscapes, not captured by the gridded macroclimatic products. The provided forest sub-canopy temperature maps will enable future research to model below-canopy biological processes and patterns, as well as species distributions more accurately.


Assuntos
Florestas , Microclima , Mudança Climática , Temperatura , Árvores
5.
Nat Commun ; 10(1): 5142, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723140

RESUMO

The evolutionary and environmental factors that shape fungal biogeography are incompletely understood. Here, we assemble a large dataset consisting of previously generated mycobiome data linked to specific geographical locations across the world. We use this dataset to describe the distribution of fungal taxa and to look for correlations with different environmental factors such as climate, soil and vegetation variables. Our meta-study identifies climate as an important driver of different aspects of fungal biogeography, including the global distribution of common fungi as well as the composition and diversity of fungal communities. In our analysis, fungal diversity is concentrated at high latitudes, in contrast with the opposite pattern previously shown for plants and other organisms. Mycorrhizal fungi appear to have narrower climatic tolerances than pathogenic fungi. We speculate that climate change could affect ecosystem functioning because of the narrow climatic tolerances of key fungal taxa.


Assuntos
Clima , Fungos/fisiologia , Internacionalidade , Biodiversidade , Filogeografia , Chuva , Especificidade da Espécie , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...