Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cancer ; 15(12): 4007-4019, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911382

RESUMO

Background: T-box transcription factor 3 (TBX3) has been implicated in various malignant tumors, while its exact involvement in osteosarcoma (OS) remains unknown. Methods: Utilizing microarray data and bulk and single-cell RNA-seq data and qRT-PCR, we compared TBX3 mRNA expression levels in different stages of OS. Diagnostic ability testing and prognosis analysis were conducted to better understand the clinical importance of TBX3. Enrichment analysis was performed using gene groups with biological functions similar to TBX3 in different stages of OS to investigate the potential role of TBX3 in OS progression. In addition, we predicted medications targeted at TBX3 and identified downstream target genes to gain a comprehensive understanding of its therapeutic direction and regulatory mechanism. Results: TBX3 expression was highly upregulated in OS and was predominantly expressed in osteoblastic OS cells, with higher expression levels in metastatic tissues. TBX3 expression appeared somewhat suitable for discriminating between OS and normal samples, as well as different stages of OS. We found that TBX3 increased the malignant development of OS by altering cell cycle and cell adhesion molecules; exisulind and tacrolimus, which are targeted small-molecule medicines, were anticipated to counteract this dysregulation. The expression of CCNA2 could potentially be regulated by TBX3, contributing to OS advancement. Conclusion: TBX3 emerges as a potential biomarker for OS. In-depth research into its underlying molecular processes may offer new perspectives on treating OS.

2.
J Cancer ; 15(1): 126-139, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164289

RESUMO

Background: KIAA1429, a member of the RNA methyltransferase complex, is involved in cancer progression; however, the clinical significance and underlying mechanism of KIAA1429 in osteosarcoma (OS) remains to be reported. Methods: We evaluated the clinical significance of KIAA1429 in OS by performing RT-qPCR, microarray, and RNA sequencing and using published data as a reference. Two KIAA1429-targeting siRNA constructs were transfected into SW1353 cells. CCK-8 assay, colony formation assays, flow cytometry and the xenograft mouse model were conducted to investigate the biological function of KIAA1429 in OS. Results: The mRNA expression of KIAA1429 was markedly upregulated in 250 OS samples as compared to that in 71 non-cancer samples (standardized mean difference = 0.67). Summary receiver operating characteristic curve analysis revealed that KIAA1429 exhibited reliable diagnostic capacity to differentiate OS samples from non-cancer samples (area under the curve = 0.83). Further, survival analysis indicated that KIAA1429 overexpression was associated with shorter overall survival time. Knocking down KIAA1429 reduced m6A methylation levels, inhibited proliferation, prevented the growth of tumors in vivo and accelerated apoptosis of OS cells. In total, 395 KIAA1429-related genes were identified among co-expressed genes and differentially expressed genes, which were enriched in the cell cycle pathway. Protein-protein interaction network analysis showed that CDK1, CCNA2, and CCNB1 were KIAA1429-related genes, serving as major network hubs in OS. Conclusions: Our findings indicate that KIAA1429 plays an oncogenic role in OS and potentially facilitates OS progression via a mechanism that involves regulating CDK1, CCNA2, and CCNB1.

3.
J Cancer ; 14(14): 2619-2632, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779876

RESUMO

Background: The aetiology of osteosarcoma (OS) remains unclear. Desmocollin-2 (DSC2) mediates intercellular adhesion and is involved in tumour progression. Therefore, we aim to investigate the potential role of DSC2 in OS. Methods: We analyzed the expression, prognostic value and immune infiltration of DSC2 in OS via single cell and bulk RNA seq data. Besides, the expression and function of DSC2 in OS were further verified by in vitro experiment. Results: We preliminarily determined that DSC2 was high expressed in OS, which was a risk factor for survival and had a strong relationship with immune cell infiltration. What's more, in vitro experiments also demonstrated that DSC2 was high expressed in OS cells, and silencing DSC2 would suppress proliferation, migration and invasion of OS cells. Conclusions: DSC2 may serve as an oncogene, which exerts a crucial role in tumor progression, predicting prognosis and immune cell infiltration in OS.

4.
Cancer Med ; 12(16): 17491-17503, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37439040

RESUMO

BACKGROUND: Osteosarcoma (OS) is a highly malignant primary bone tumor. Family of homology 60A (FAM60A) reportedly contributes to the malignant growth of some tumors. METHODS: Herein we investigated the mRNA expression level of FAM60A by combining OS and non-cancer samples from public databases. Immunohistochemistry was performed to determine protein expression levels of FAM60A in patients with OS. Further, RT-qPCR and western blotting were conducted to evaluate FAM60A expression in various OS cell lines. CCK-8 assay, colony formation assay, and flow cytometry were applied to determine the function of FAM60A. Finally, functional enrichment analysis was performed based on FAM60A co-expressed genes. RESULTS: FAM60A mRNA expression level was found to be significantly upregulated (standardized mean difference = 1.27, 95% CI [0.67-1.88]). Survival analyses suggested that higher expression of FAM60A was indicative of poor prognoses. Similarly, FAM60A protein expression level was also observed to be upregulated. Knocking down FAM60A expression inhibited OS cell proliferation, increased apoptosis, and blocked cells from entering the S phase. Besides, cell cycle was the most prominently enriched pathway, and BUB1, DTL, and EXO1 were identified as hub genes. CONCLUSIONS: FAM60A expression was found to be markedly upregulated in OS; furthermore, FAM60A was observed to promote OS cell proliferation, inhibit apoptosis, and participate in cell cycle regulation. Besides, FAM60A may interact with hub genes to participate in the progress of OS.


Assuntos
Neoplasias Ósseas , Proteínas de Ligação a DNA , MicroRNAs , Osteossarcoma , Humanos , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Osteossarcoma/patologia , RNA Mensageiro , Proteínas de Ligação a DNA/metabolismo
5.
J Cancer ; 14(11): 2051-2065, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37497412

RESUMO

Background: The most frequent primary bone cancer in teenagers, osteosarcoma (OS), is particularly aggressive with a high mortality rate. Methods: By combining public databases, OS and non-cancer samples were obtained. The Wilcoxon test and standardized mean difference (SMD) were utilized to evaluate the mRNA expression level of TATA-box binding protein associated factor, RNA polymerase 1 subunit D (TAF1D). The potential of TAF1D to discriminate OS samples from non-cancer samples was revealed by summary receiver operating characteristic curve (sROC). To investigate the prognostic significance, Kaplan‒Meier curve and univariate Cox analysis were performed. Immunohistochemistry (IHC) was used to determine the TAF1D protein expression level. ESTIMATE algorithm and TIMER2.0 database were used to reveal the association between TAF1D expression and the immune microenvironment. Enrichment analysis and potential drug prediction were performed to clarify the underlying molecular mechanisms and possible therapeutic directions of TAF1D. Ultimately, the transcription factors (TFs) and the TAF1D binding site were predicted based on the Cistrome and JASPAR databases. Results: TAF1D was upregulated in OS at the mRNA and protein levels and possessed robust discriminatory power. TAF1D upregulation was suggestive of worse prognosis and enhancement of tumor purity in OS patients. The cell cycle was the most significantly enriched pathway, and NU.1025 was considered to be the potential target agent. Finally, MYC was identified as a TF that regulates the expression of TAF1D. Conclusions: Altogether, TAF1D has the potential to serve as a biological marker and therapeutic target in OS, which could offer new perspectives for OS treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...