Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gigascience ; 7(7)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29917076

RESUMO

Background: Recently, great technical progress has been achieved in the field of plant phenotyping. High-throughput platforms and the development of improved algorithms for rosette image segmentation make it possible to extract shape and size parameters for genetic, physiological, and environmental studies on a large scale. The development of low-cost phenotyping platforms and freeware resources make it possible to widely expand phenotypic analysis tools for Arabidopsis. However, objective descriptors of shape parameters that could be used independently of the platform and segmentation software used are still lacking, and shape descriptions still rely on ad hoc or even contradictory descriptors, which could make comparisons difficult and perhaps inaccurate. Modern geometric morphometrics is a family of methods in quantitative biology proposed to be the main source of data and analytical tools in the emerging field of phenomics studies. Based on the location of landmarks (corresponding points) over imaged specimens and by combining geometry, multivariate analysis, and powerful statistical techniques, these tools offer the possibility to reproducibly and accurately account for shape variations among groups and measure them in shape distance units. Results: Here, a particular scheme of landmark placement on Arabidopsis rosette images is proposed to study shape variation in viral infection processes. Shape differences between controls and infected plants are quantified throughout the infectious process and visualized. Quantitative comparisons between two unrelated ssRNA+ viruses are shown, and reproducibility issues are assessed. Conclusions: Combined with the newest automated platforms and plant segmentation procedures, geometric morphometric tools could boost phenotypic features extraction and processing in an objective, reproducible manner.


Assuntos
Arabidopsis/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Folhas de Planta/anatomia & histologia , Algoritmos , Arabidopsis/genética , Arabidopsis/virologia , Biologia Computacional , Análise Discriminante , Fenótipo , Doenças das Plantas/virologia , Folhas de Planta/virologia , Análise de Componente Principal , Vírus de RNA/patogenicidade , Reprodutibilidade dos Testes , Software
2.
PLoS One ; 6(12): e28466, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22174812

RESUMO

Plant viral infections induce changes including gene expression and metabolic components. Identification of metabolites and microRNAs (miRNAs) differing in abundance along infection may provide a broad view of the pathways involved in signaling and defense that orchestrate and execute the response in plant-pathogen interactions. We used a systemic approach by applying both liquid and gas chromatography coupled to mass spectrometry to determine the relative level of metabolites across the viral infection, together with a miRs profiling using a micro-array based procedure. Systemic changes in metabolites were characterized by a biphasic response after infection. The first phase, detected at one dpi, evidenced the action of a systemic signal since no virus was detected systemically. Several of the metabolites increased at this stage were hormone-related. miRs profiling after infection also revealed a biphasic alteration, showing miRs alteration at 5 dpi where no virus was detected systemically and a late phase correlating with virus accumulation. Correlation analyses revealed a massive increase in the density of correlation networks after infection indicating a complex reprogramming of the regulatory pathways, either in response to the plant defense mechanism or to the virus infection itself. Our data propose the involvement of a systemic signaling on early miRs alteration.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Nicotiana/metabolismo , Nicotiana/virologia , Doenças das Plantas/genética , Vírus do Mosaico do Tabaco/fisiologia , Aminoácidos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Redes Reguladoras de Genes/genética , MicroRNAs/metabolismo , Doenças das Plantas/virologia , Folhas de Planta/microbiologia , Transdução de Sinais/genética , Estatísticas não Paramétricas , Fatores de Tempo , Nicotiana/genética
3.
BMC Plant Biol ; 9: 152, 2009 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-20042107

RESUMO

BACKGROUND: Micro RNAs (miRs) constitute a large group of endogenous small RNAs that have crucial roles in many important plant functions. Virus infection and transgenic expression of viral proteins alter accumulation and activity of miRs and so far, most of the published evidence involves post-transcriptional regulations. RESULTS: Using transgenic plants expressing a reporter gene under the promoter region of a characterized miR (P-miR164a), we monitored the reporter gene expression in different tissues and during Arabidopsis development. Strong expression was detected in both vascular tissues and hydathodes. P-miR164a activity was developmentally regulated in plants with a maximum expression at stages 1.12 to 5.1 (according to Boyes, 2001) along the transition from vegetative to reproductive growth. Upon quantification of P-miR164a-derived GUS activity after Tobacco mosaic virus Cg or Oilseed rape mosaic virus (ORMV) infection and after hormone treatments, we demonstrated that ORMV and gibberellic acid elevated P-miR164a activity. Accordingly, total mature miR164, precursor of miR164a and CUC1 mRNA (a miR164 target) levels increased after virus infection and interestingly the most severe virus (ORMV) produced the strongest promoter induction. CONCLUSION: This work shows for the first time that the alteration of miR pathways produced by viral infections possesses a transcriptional component. In addition, the degree of miR alteration correlates with virus severity since a more severe virus produces a stronger P-miR164a induction.


Assuntos
Arabidopsis/genética , Arabidopsis/virologia , MicroRNAs/metabolismo , Vírus do Mosaico/fisiologia , Regiões Promotoras Genéticas , Arabidopsis/metabolismo , Clonagem Molecular , Biologia Computacional , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes Reporter , MicroRNAs/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/virologia , RNA de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA