Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 605: 547-555, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34340039

RESUMO

A quasi-solid-state Li-Te battery is developed by using a flexible gel polymer electrolyte (GPE), porous carbon/tellurium cathode, and lithium metal anode. The ionic conductivity of GPE is controllable and reaches up to 8.0 × 10-4 S cm-1 at 25 °C. The good interfacial contact with Li metal ensures excellent cycling stability in Li/GPE/Li symmetric cells. Moreover, it is found that, compared to S and Se counterparts, the Li-Te battery exhibits good rate capability due to the high electrical conductivity of Te and excellent interfacial stability among GPE, Li, and Te. This work provides several facile strategies to develop safe and high-performance solid-state Li-Te batteries.


Assuntos
Lítio , Telúrio , Fontes de Energia Elétrica , Íons , Polímeros
2.
ACS Appl Mater Interfaces ; 13(14): 16345-16354, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33787196

RESUMO

Potassium batteries are an emerging energy storage technology due to the large abundance of potassium, low cost, and potentially high energy density. However, it remains challenging to find suitable electrode materials with high energy density and good cycling stability due to the structural instability and kinetics issues resulting from large size K+. Herein, a durable and high-capacity K-Te battery was developed by rational design of a Te/C electrode and electrolyte salt chemistry. A well-confined Te/C cathode structure was prepared by using a commercially available activated carbon as the Te host via a melt-diffusion method. Compared to bulky Te, the confined Te/C electrode exhibited greatly improved cycling stability, specific capacity, and rate capability in K-Te batteries. Moreover, it was found that the electrolyte salts (KPF6 and KFSI) had significant impacts on the electrochemical performance of K-Te batteries. The Te/C electrode in the KPF6-based carbonate electrolyte exhibited higher specific capacity and better rate performance than the Te/C electrode in the KFSI-based one. Mechanism studies revealed that the KPF6 salt resulted in an organic species-rich solid-electrolyte interphase (SEI) on the Te/C electrode, allowing for fast electron transfer and K-ion diffusion and enhanced K-ion storage performance in K-Te batteries. In contrast, KFSI salt led to the formation of KF-rich SEI layers, which had much higher resistances for electron and K-ion transport and was less effective for the well-confined Te/C electrode. Our work finds that the Te electrode and electrolyte chemistry need to be simultaneously optimized and tailored toward K-ion storage in K-Te batteries. It is expected that the finding reported herein might be inspirable for the future development of K-chalcogen (S/Se/Te) batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...