Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(44): 20442-20451, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36282681

RESUMO

Herein we report a ligand-centered redox-controlled strategy for the synthesis of an unusual binuclear diradical cobalt(III) complex, [Co2III(L•3-)2] (1), featuring two three-electron reduced trianionic monoradical 2,9-bis(phenyldiazo)-1,10-phenanthroline ligands (L•3-) and two intermediate-spin cobalt(III) centers having a Co-Co bond. Controlled ligand-centered oxidation of 1 afforded two mononuclear complexes, [CoII(L•-)(L0)]+ ([3])+ and [CoII(L0)2]2+ ([2]2+), which upon further ligand-centered reduction yielded a di-azo-anion diradical complex, [CoII(L•-)2] (4). In complex 1, two three-electron reduced di-azo-anion monoradical ligands (L•3-) bridge two intermediate Co(III) centers at a distance of 2.387(2) Å, while upon oxidation, one of the coordinating azo-arms of L becomes pendent, and in complexes [2]2+, [3]+, and 4, two tetradentate ligands coordinate a single Co(II) center in a tridentate meridional fashion with one uncoordinated azo-arm from each of the ligands. In the presence of reducing agents, the monomers [2]2+, [3]+, and 4 undergo ligand-centered reduction to form azo-anion radicals, and the otherwise pendent azo-arms in the presence of cobalt(II)-salts like Co(ClO4)2 or CoCl2 bind the second Co(II)-ion; further internal electron transfer from the cobalt center to the arylazo backbone produces the binuclear complex 1. Spectroscopic analysis, DFT studies, and control experiments were performed to understand the electronic structures and the ligand-centered redox-controlled interconversion. The application of complex 1 as a molecular memory device (memristor) was also explored. Complex 1 showed encouraging results as a memristor with a current ON/OFF ratio > 104 and is highly promising for resistive RAM/ROM applications.

2.
Nanotechnology ; 32(35)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34038892

RESUMO

Here, we report robust and highly reproducible nonvolatile resistive switching (RS) devices with artificial synaptic functionalities utilizing redox-exfoliated few-layered 2H-MoS2nanoflakes. Advantageous polar solvent compatibility of 2D MoS2from this method were utilized to fabricate thin film devices very easily and cost-effectively using polystyrene as matrix. Prominent RS property of polystyrene thin film devices with varying MoS2concentrations strongly favors electroforming-free operation. The conduction band position of 2D MoS2nanosheet in combination with the work functions of chosen electrodes looks alleviating to switch the current from low to high at a suitable positive bias voltage. We further confirmed the mechanism of charge transport through fitting the results with theoretical models, say injection-dominated Schottky emission model for low-conducting states and space-charge-limited current mechanism for the high-conducting state. Interestingly, a relatively high current On/Off ratio 102was recorded during the pump-probe testing to show resistive random-access memory (ReRAM) application. Finally, artificial synaptic functionalities- the building blocks of neuromorphic computing architectures is also illustrated by considering the robust RS property and ReRAM application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...