Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocrinology ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028678

RESUMO

Recognising the limitations of current therapies for Addison's disease, novel treatments that replicate dynamic physiologic corticosteroid secretion, under control of adrenocorticotropic hormone, are required. The aim of these experiments was to evaluate the feasibility of adrenocortical cell transplantation (ACT) in a large animal model, adapting methods successfully used for intra-cutaneous pancreatic islet cell transplantation, using a fully biodegradable temporising matrix. Autologous porcine ACT was undertaken by bilateral adrenalectomy, cell isolation, culture and intracutaneous injection into a skin site pre-prepared using a biodegradable temporising matrix (BTM) foam. Hydrocortisone support was provided during adrenocortical cell engraftment and weaned as tolerated. Blood adrenocortical hormone concentrations were monitored and the transplant site was examined at end-point. Outcome measures included cellular histochemistry, systemic hormone production and hydrocortisone independence. Transplanted adrenocortical cells showed a capability to survive and proliferate within the intracutaneous site, and an ability to self-organise into discrete tissue organoids with features of the normal adrenal histologic architecture. Interpretation of systemic hormone levels was confounded by identification of accessory adrenals and regenerative cortical tissue within the adrenal bed post-mortem. Corticosteroids were unable to be completely ceased. ACT in a large animal model has not previously been attempted, yet it is an important step towards clinical translation. These results demonstrate potential for ACT based on the development of adrenal organoids at the BTM site. However, the inability to achieve clinically relevant systemic hormone production suggests insufficient function, likely attributable to insufficient cells through delivered dose and subsequent proliferation.

2.
J Neurosci Res ; 102(3): e25322, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38520160

RESUMO

Emerging evidence has implicated the orexin system in non-motor pathogenesis of Parkinson's disease. It has also been suggested the orexin system is involved in the modulation of motor control, further implicating the orexin system in Parkinson's disease. Parkinson's disease is the second most common neurodegenerative disease with millions of people suffering worldwide with motor and non-motor symptoms, significantly affecting their quality of life. Treatments are based solely on symptomatic management and no cure currently exists. The orexin system has the potential to be a treatment target in Parkinson's disease, particularly in the non-motor stage. In this review, the most current evidence on the orexin system in Parkinson's disease and its potential role in motor and non-motor symptoms of the disease is summarized. This review begins with a brief overview of Parkinson's disease, animal models of the disease, and the orexin system. This leads into discussion of the possible roles of orexin neurons in Parkinson's disease and levels of orexin in the cerebral spinal fluid and plasma in Parkinson's disease and animal models of the disease. The role of orexin is then discussed in relation to symptoms of the disease including motor control, sleep, cognitive impairment, psychological behaviors, and the gastrointestinal system. The neuroprotective effects of orexin are also summarized in preclinical models of the disease.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Humanos , Doença de Parkinson/patologia , Orexinas/farmacologia , Qualidade de Vida , Modelos Animais de Doenças
3.
Hum Exp Toxicol ; 42: 9603271231188970, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37553751

RESUMO

Riboflavin deficiency produces severe peripheral neve demyelination in young, rapidly growing chickens. While this naturally-occurring vitamin B2 deficiency can cause a debilitating peripheral neuropathy, and mortality, in poultry flocks, it can also be a useful experimental animal model to study the pathogenesis of reliably reproducible peripheral nerve demyelination. Moreover, restitution of normal riboflavin levels in deficient birds results in brisk remyelination. It is the only acquired, primary, demyelinating tomaculous neuropathy described to date in animals. The only other substance that causes peripheral nerve demyelination similar to avian riboflavin deficiency is tellurium and the pathologic features of the peripheral neuropathy produced by this developmental neurotoxin in weanling rats are also described.


Assuntos
Doenças Desmielinizantes , Doenças do Sistema Nervoso Periférico , Remielinização , Deficiência de Riboflavina , Animais , Ratos , Deficiência de Riboflavina/complicações , Deficiência de Riboflavina/patologia , Deficiência de Riboflavina/veterinária , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Galinhas , Nervos Periféricos/patologia , Doenças do Sistema Nervoso Periférico/etiologia , Doenças do Sistema Nervoso Periférico/patologia , Doenças do Sistema Nervoso Periférico/veterinária , Suplementos Nutricionais , Vitaminas
4.
Mol Pharm ; 20(8): 3937-3946, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37463151

RESUMO

Acute myeloid leukemia (AML) kills 75% of patients and represents a major clinical challenge with a need to improve on current treatment approaches. Targeting sphingosine kinase 1 with a novel ATP-competitive-inhibitor, MP-A08, induces cell death in AML. However, limitations in MP-A08's "drug-like properties" (solubility, biodistribution, and potency) hinder its pathway to the clinic. This study demonstrates a liposome-based delivery system of MP-A08 that exhibits enhanced MP-A08 potency against AML cells. MP-A08-liposomes increased MP-A08 efficacy against patient AML cells (>140-fold) and significantly prolonged overall survival of mice with human AML disease (P = 0.03). The significant antileukemic property of MP-A08-liposomes could be attributed to its enhanced specificity, bioaccessibility, and delivery to the bone marrow, as demonstrated in the pharmacokinetic and biodistribution studies. Our findings indicate that MP-A08-liposomes have potential as a novel treatment for AML.


Assuntos
Leucemia Mieloide Aguda , Lipossomos , Humanos , Camundongos , Animais , Lipossomos/uso terapêutico , Distribuição Tecidual , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool) , Linhagem Celular Tumoral
5.
J Clin Neurosci ; 114: 70-76, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37321020

RESUMO

OBJECTIVE: Rapid and efficacious haemostasis is paramount in neurosurgery. Assessing the efficacy and short- and long-term safety of haemostatic agents utilised within cerebral tissue is essential. This pilot study investigates the haemostatic efficacy and long-term safety of a novel beta-chitin patch against traditionally used agents, bipolar and Floseal, within cerebral tissue. METHODS: Eighteen Merino sheep underwent standardised distal cortical vessel injury via temporal craniotomy. Sheep were randomised to receive 2 mls Floseal, 2 cm novel beta-chitin patch, or bipolar cautery to manage bleeding. All sheep underwent cerebral magnetic resonance imaging (MRI) at three months, before euthanasia and brain harvesting for histological assessment. RESULTS: Beta-chitin demonstrated a trend towards a faster mean time to haemostasis (TTH) compared to Floseal (223.3 ± 199 s v. 259.8 ± 186.4 s), albeit non-significant (p = 0.234). Radiologically, cerebrocortical necrosis (p = 0.842) and oedema (p = 0.368) were noted slightly more frequently in the beta-chitin group. Histologically, severe fibrotic (p = 0.017) and granulomatous changes at the craniotomy sites were only present in the beta-chitin group (p = 0.002). Neuronal degeneration was seen in all with Floseal, but beta-chitin showed a trend towards more severe reaction when present. Bipolar use predominantly showed an inflammatory cortical reaction with substantial microvascular proliferation, and Floseal showed worse severity and depth of subpial oedema, however no statistical significance was reached. CONCLUSION: All haemostats controlled bleeding, with beta-chitin demonstrating a non-inferior TTH compared to Floseal. However, it resulted in intense granulomatous and fibrotic changes, including degenerative neuronal reactions. More extensive studies are needed to assess these trends, to make further clinical inferences.


Assuntos
Hemostáticos , Ovinos , Animais , Hemostáticos/farmacologia , Projetos Piloto , Esponja de Gelatina Absorvível , Hemostasia , Hemostasia Cirúrgica/métodos , Quitina/farmacologia , Quitina/uso terapêutico
6.
FASEB J ; 37(4): e22846, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36856983

RESUMO

Colchicine is a broad-acting anti-inflammatory agent that has attracted interest for repurposing in atherosclerotic cardiovascular disease. Here, we studied its ability at a human equivalent dose of 0.5 mg/day to modify plaque formation and composition in murine atherosclerosis and investigated its actions on macrophage responses to atherogenic stimuli in vitro. In atherosclerosis induced by high-cholesterol diet, Apoe-/- mice treated with colchicine had 50% reduction in aortic oil Red O+ plaque area compared to saline control (p = .001) and lower oil Red O+ staining of aortic sinus lesions (p = .03). In vitro, addition of 10 nM colchicine inhibited foam cell formation from murine and human macrophages after treatment with oxidized LDL (ox-LDL). Mechanistically, colchicine downregulated glycosylation and surface expression of the ox-LDL uptake receptor, CD36, and reduced CD36+ staining in aortic sinus plaques. It also decreased macrophage uptake of cholesterol crystals, resulting in lower intracellular lysosomal activity, inhibition of the NLRP3 inflammasome, and reduced secretion of IL-1ß and IL-18. Colchicine's anti-atherosclerotic actions were accentuated in a mouse model of unstable plaque induced by carotid artery tandem stenosis surgery, where it decreased lesion size by 48% (p = .01), reduced lipid (p = .006) and necrotic core area (p = .007), increased collagen content and cap-to-necrotic core ratio (p = .05), and attenuated plaque neutrophil extracellular traps (p < .001). At low dose, colchicine's effects were not accompanied by the evidence of microtubule depolymerization. Together, these results show that colchicine exerts anti-atherosclerotic and plaque-stabilizing effects at low dose by inhibiting foam cell formation and cholesterol crystal-induced inflammation. This provides a new framework to support its repurposing for atherosclerotic cardiovascular disease.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Estenose das Carótidas , Humanos , Animais , Camundongos , Células Espumosas , Colchicina , Colesterol
7.
Front Aging Neurosci ; 14: 926904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35978952

RESUMO

Extracellular ß-amyloid (Aß) deposition and intraneuronal phosphorylated-tau (pTau) accumulation are the hallmark lesions of Alzheimer's disease (AD). Recently, "sorfra" plaques, named for the extracellular deposition of sortilin c-terminal fragments, are reported as a new AD-related proteopathy, which develop in the human cerebrum resembling the spatiotemporal trajectory of tauopathy. Here, we identified intraneuronal sortilin aggregation as a change related to the development of granulovacuolar degeneration (GVD), tauopathy, and sorfra plaques in the human hippocampal formation. Intraneuronal sortilin aggregation occurred as cytoplasmic inclusions among the pyramidal neurons, co-labeled by antibodies to the extracellular domain and intracellular C-terminal of sortilin. They existed infrequently in the brains of adults, while their density as quantified in the subiculum/CA1 areas increased in the brains from elderly lacking Aß/pTau, with pTau (i.e., primary age-related tauopathy, PART cases), and with Aß/pTau (probably/definitive AD, pAD/AD cases) pathologies. In PART and pAD/AD cases, the intraneuronal sortilin aggregates colocalized partially with various GVD markers including casein kinase 1 delta (Ck1δ) and charged multivesicular body protein 2B (CHMP2B). Single-cell densitometry established an inverse correlation between sortilin immunoreactivity and that of Ck1δ, CHMP2B, p62, and pTau among pyramidal neurons. In pAD/AD cases, the sortilin aggregates were reduced in density as moving from the subiculum to CA subregions, wherein sorfra plaques became fewer and absent. Taken together, we consider intraneuronal sortilin aggregation an aging/stress-related change implicating protein sorting deficit, which can activate protein clearance responses including via enhanced phosphorylation and hydrolysis, thereby promoting GVD, sorfra, and Tau pathogenesis, and ultimately, neuronal destruction and death.

8.
FASEB J ; 36(2): e22154, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032419

RESUMO

Eukaryotic elongation factor 2 kinase (eEF2K) is an atypical protein kinase that controls protein synthesis in cells under stress. Although well studied in cancer, less is known about its roles in chronic inflammatory diseases. Here, we examined its regulation of macrophage cholesterol handling in the context of atherosclerosis. eEF2K mRNA expression and protein activity were upregulated in murine bone marrow-derived macrophages (BMDMs) exposed to oxidized low-density lipoprotein cholesterol (oxLDL). When incubated with oxLDL, BMDMs from eEF2K knockout (Eef2k-/- ) mice formed fewer Oil Red O+ foam cells than Eef2k+/+ BMDMs (12.5% ± 2.3% vs. 32.3% ± 2.0%, p < .01). Treatment with a selective eEF2K inhibitor, JAN-384, also decreased foam cell formation for C57BL/6J BMDMs and human monocyte-derived macrophages. Disabling eEF2K selectively decreased protein expression of the CD36 cholesterol uptake receptor, mediated by a reduction in the proportion of translationally active Cd36 mRNA. Eef2k-/- mice bred onto the Ldlr-/- background developed aortic sinus atherosclerotic plaques that were 30% smaller than Eef2k+/+ -Ldlr-/- mice after 16 weeks of high cholesterol diet (p < .05). Although accompanied by a reduction in plaque CD36+ staining (p < .05) and lower CD36 expression in circulating monocytes (p < .01), this was not associated with reduced lipid content in plaques as measured by oil red O staining. Finally, EEF2K and CD36 mRNA levels were higher in blood mononuclear cells from patients with coronary artery disease and recent myocardial infarction compared to healthy controls without coronary artery disease. These results reveal a new role for eEF2K in translationally regulating CD36 expression and foam cell formation in macrophages. Further studies are required to explore therapeutic targeting of eEF2K in atherosclerosis.


Assuntos
Antígenos CD36/metabolismo , Quinase do Fator 2 de Elongação/metabolismo , Células Espumosas/metabolismo , Animais , Aterosclerose/metabolismo , Colesterol/metabolismo , Doença da Artéria Coronariana/metabolismo , Feminino , Humanos , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Placa Aterosclerótica/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia
9.
Vet Res Commun ; 46(1): 289-293, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35059960

RESUMO

The signature pathological feature of the pseudolaminar cerebrocortical necrosis found in polioencephalomalacia (PEM) of ruminants is the development of red (eosinophilic) neurons. These neurons are generally considered to be irredeemably injured but we have shown, for the first time, in ovine PEM cases, that most strongly express amyloid precursor protein (APP), which has a neuroprotective role in the brain. By contrast, neurons in unaffected cerebral cortices from control sheep were APP immunonegative. This finding suggests that, rather than being inevitably destined to die, some of these APP immunoreactive cortical neurons may survive and regain structural and functional integrity.


Assuntos
Encefalomalacia , Doenças dos Ovinos , Precursor de Proteína beta-Amiloide , Animais , Encefalomalacia/veterinária , Necrose/veterinária , Neurônios , Ovinos
10.
Vet Pathol ; 59(2): 328-332, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34872408

RESUMO

Since axonal injury (AI) is an important component of many veterinary neurologic disorders, we assessed the relative ability of a panel of antibodies (amyloid precursor protein, 3 subunits of neurofilament protein, protein gene product 9.5, ubiquitin, and synaptophysin) to detect axonal swellings or spheroids. Abundant axonal spheroids found in necrotic internal capsule foci produced in 4 sheep by chronic Clostridium perfringens type D epsilon neurotoxicity provided a model system in which to evaluate this important diagnostic tool. There was heterogeneous labeling of subsets of spheroids by the respective antibodies, suggesting that, in order to detect the complete spectrum of AI in diagnostic cases, a range of antibodies should be used, not only when spheroids are plentiful but also when they are few in number or incompletely developed. The application of insufficient markers in the latter cases can potentially lead to the contribution of AI to lesion pathogenesis being underappreciated.


Assuntos
Encefalomalacia , Doenças dos Ovinos , Animais , Clostridium perfringens/genética , Encefalomalacia/patologia , Encefalomalacia/veterinária , Necrose/veterinária , Ovinos , Doenças dos Ovinos/patologia
11.
J Cardiothorac Surg ; 16(1): 283, 2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34602088

RESUMO

BACKGROUND: In our earlier study on the functional limits of the aneurysmal aortic root we determined the pig root is susceptible to failure at high aortic pressures levels. We established a pig rupture model using cardiopulmonary bypass to determine the most susceptible region of the aortic root under the highest pressures achievable using continuous flow, and what changes occur in these regions on a macroscopic and histological level. This information may help guide clinical management of aortic root and ascending aorta pathology. METHODS: Five pigs underwent 4D flow MRI imaging pre surgery to determine vasopressor induced wall sheer stress and flow parameters. All pigs were then placed on cardiopulmonary bypass (CPB) via median sternotomy, and maximal aortic root and ascending aorta flows were initiated until rupture or failure, to determine the most susceptible region of the aorta. The heart was explanted and analysed histologically to determine if histological changes mirror the macroscopic observations. RESULTS: The magnetic resonance imaging (MRI) aortic flow and wall sheer stress (WSS) increased significantly in all regions of the aorta, and the median maximal pressures obtained during cardiopulmonary bypass was 497 mmHg and median maximal flows was 3.96 L/m. The area of failure in all experiments was the non-coronary cusp of the aortic valve. Collagen and elastin composition (%) was greatest in the proximal regions of the aorta. Collagen I and III showed greatest content in the inner aortic root and ascending aorta regions. CONCLUSIONS: This unique porcine model shows that the aortic root is most susceptible to failure at high continuous aortic pressures, supported histologically by different changes in collagen content and subtypes in the aortic root. With further analysis, this information could guide management of the aortic root in disease.


Assuntos
Aneurisma da Aorta Torácica , Ruptura Aórtica , Animais , Aorta/diagnóstico por imagem , Aorta/cirurgia , Ruptura Aórtica/diagnóstico por imagem , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/cirurgia , Ponte Cardiopulmonar , Suínos
12.
J Cardiothorac Surg ; 16(1): 255, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496896

RESUMO

BACKGROUND: Although aortic root and ascending aortic aneurysms are treated the same, they differ in embryological development and pathological processes. This study examines the microscopic structural differences between aortic root and ascending aortic aneurysms, correlating these features to the macroscopic pathophysiological processes. METHODS: We obtained surgical samples from ascending aortic aneurysms (n = 11), aortic root aneurysms (n = 3), and non-aneurysmal patients (n = 7), Aortic collagen and elastin content were examined via histological analysis, and immunohistochemistry techniques used to determine collagen I, III, and IV subtypes. Analysis was via observational features, and colour deconvolution quantification techniques. RESULTS: Elastin fiber disruption and fragmentation was the most extensive in the proximal aneurysmal regions. Medial fibrosis and collagen density increased in proximal aneurysmal regions and aortic root aneurysms (p < 0.005). Collagen I was seen in highest quantity in aortic root aneurysms. Collagen I content was greatest in the sinus tissue regions compared to the valvular and ostial regions (p < 0.005) Collagen III and IV quantification did not vary greatly. The most susceptible regions to ultrastructural changes in disease are the proximal ascending aorta and aortic root. CONCLUSIONS: The aortic root differs histologically from the ascending aorta confirming its unique composition in aneurysm pathology. These findings should prompt further evaluation on the influence of this altered structure on function which could potentially guide clinical management.


Assuntos
Aneurisma da Aorta Torácica , Aneurisma Aórtico , Aorta , Aorta Torácica , Aneurisma Aórtico/cirurgia , Elastina , Humanos
13.
Neural Plast ; 2021: 3651735, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539776

RESUMO

The levels of reproduction-associated hormones in females, such as estrogen, progesterone, prolactin, and oxytocin, change dramatically during pregnancy and postpartum. Reproduction-associated hormones can affect adult hippocampal neurogenesis (AHN), thereby regulating mothers' behavior after delivery. In this review, we first briefly introduce the overall functional significance of AHN and the methods commonly used to explore this front. Then, we attempt to reconcile the changes of reproduction-associated hormones during pregnancy. We further update the findings on how reproduction-related hormones influence adult hippocampal neurogenesis. This review is aimed at emphasizing a potential role of AHN in reproduction-related brain plasticity and its neurobiological relevance to motherhood behavior.


Assuntos
Hormônios Esteroides Gonadais/metabolismo , Hipocampo/metabolismo , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Reprodução/fisiologia , Adulto , Animais , Gonadotropina Coriônica/sangue , Gonadotropina Coriônica/metabolismo , Estrogênios/sangue , Estrogênios/metabolismo , Feminino , Hormônios Esteroides Gonadais/sangue , Hipocampo/citologia , Humanos , Comportamento Materno/fisiologia , Ocitocina/sangue , Ocitocina/metabolismo , Gravidez , Progesterona/sangue , Progesterona/metabolismo , Prolactina/sangue , Prolactina/metabolismo
14.
Front Aging Neurosci ; 13: 717263, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504419

RESUMO

Shank3 is a postsynaptic scaffolding protein of excitatory synapses. Mutations or variations of SHANK3 are associated with various psychiatric and neurological disorders. We set to determine its normal expression pattern in the human brain, and its change, if any, with age and Alzheimer's disease (AD)-type ß-amyloid (Aß) and Tau pathogenesis. In general, Shank3 immunoreactivity (IR) exhibited largely a neuropil pattern with differential laminar/regional distribution across brain regions. In youth and adults, subsets of pyramidal/multipolar neurons in the cerebrum, striatum, and thalamus showed moderate IR, while some large-sized neurons in the brainstem and the granule cells in the cerebellar cortex exhibited light IR. In double immunofluorescence, Shank3 IR occurred at the sublemmal regions in neuronal somata and large dendrites, apposing to synaptophysin-labeled presynaptic terminals. In aged cases, immunolabeled neuronal somata were reduced, with disrupted neuropil labeling seen in the molecular layer of the dentate gyrus in AD cases. In immunoblot, levels of Shank3 protein were positively correlated with that of the postsynaptic density protein 95 (PSD95) among different brain regions. Levels of Shank3, PSD95, and synaptophysin immunoblotted in the prefrontal, precentral, and cerebellar cortical lysates were reduced in the aged and AD relative to youth and adult groups. Taken together, the differential Shank3 expression among brain structures/regions indicates the varied local density of the excitatory synapses. The enriched Shank3 expression in the forebrain subregions appears inconsistent with a role of this protein in the modulation of high cognitive functions. The decline of its expression in aged and AD brains may relate to the degeneration of excitatory synapses.

15.
J Comp Pathol ; 187: 17-26, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34503650

RESUMO

In order to better differentiate ante-mortem lesions from post-mortem retinal autolysis, the temporal sequence of post-mortem changes was studied in a well-controlled mouse model. Mice were of the same strain, age and sex, and were held at a constant ambient temperature. Eyes were collected at various times up to 72 h after death and immersion-fixed in either Davidson's fixative or 10% neutral buffered formalin, paraffin-embedded and sections cut and stained with haematoxylin and eosin. The most prominent, and early, autolytic change was retinal detachment, and subsequent folding, which occurred immediately after death in formalin-fixed eyes, but not until 2 h post mortem with Davidson's fixative. Retinal separation was complete at 16 h, or almost complete by 2 h, in formalin, but in Davidson's fixative, was only partial and segmental, the latter not becoming total until much later. Retinal detachment was attended by progressively more severe disruption and dissolution of photoreceptors and, particularly in Davidson's-fixed retinas, the rod outer segment often showed marked homogenization from 30 min to 4 h after death. The other major early change was nuclear pyknosis in the inner nuclear layer. Ganglion cells initially had cytoplasmic swelling, followed by shrinkage and basophilia (at 4 h with formalin and 16 h with Davidson's), with nuclear pyknosis becoming increasingly common over time. While the three retinal neuronal layers eventually became more attenuated and depleted of cells, the thickness of these layers was augmented by severe swelling. These findings show that the post-mortem interval at which histological interpretation of retinal changes becomes potentially compromised is dependent on the duration of this interval and the fixative used.


Assuntos
Autólise , Mudanças Depois da Morte , Retina , Animais , Autólise/veterinária , Camundongos , Modelos Animais , Retina/patologia
16.
FASEB J ; 35(4): e21430, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33749885

RESUMO

Endometriosis is a painful inflammatory disorder affecting ~10% of women of reproductive age. Although chronic pelvic pain (CPP) remains the main symptom of endometriosis patients, adequate treatments for CPP are lacking. Animal models that recapitulate the features and symptoms experienced by women with endometriosis are essential for investigating the etiology of endometriosis, as well as developing new treatments. In this study, we used an autologous mouse model of endometriosis to examine a combination of disease features and symptoms including: a 10 week time course of endometriotic lesion development; the chronic inflammatory environment and development of neuroangiogenesis within lesions; sensory hypersensitivity and altered pain responses to vaginal, colon, bladder, and skin stimulation in conscious animals; and spontaneous animal behavior. We found significant increases in lesion size from week 6 posttransplant. Lesions displayed endometrial glands, stroma, and underwent neuroangiogenesis. Additionally, peritoneal fluid of mice with endometriosis contained known inflammatory mediators and angiogenic factors. Compared to Sham, mice with endometriosis displayed: enhanced sensitivity to pain evoked by (i) vaginal and (ii) colorectal distension, (iii) altered bladder function and increased sensitivity to cutaneous (iv) thermal and (v) mechanical stimuli. The development of endometriosis had no effect on spontaneous behavior. This study describes a comprehensive characterization of a mouse model of endometriosis, recapitulating the clinical features and symptoms experienced by women with endometriosis. Moreover, it delivers the groundwork to investigate the etiology of endometriosis and provides a platform for the development of therapeutical interventions to manage endometriosis-associated CPP.


Assuntos
Doenças do Colo/etiologia , Endometriose/patologia , Dermatopatias/etiologia , Doenças da Bexiga Urinária/etiologia , Doenças Vaginais/etiologia , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Feminino , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Dor
17.
JACC Clin Electrophysiol ; 7(5): 630-641, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33640353

RESUMO

OBJECTIVES: This study sought to evaluate the effect of weight loss on the atrial substrate for atrial fibrillation (AF). BACKGROUND: Whether weight loss can reverse the atrial substrate of obesity is not known. METHODS: Thirty sheep had sustained obesity induced by ad libitum calorie-dense diet over 72 weeks. Animals were randomized to 3 groups: sustained obesity and 15% and 30% weight loss. The animals randomized to weight loss underwent weight reduction by reducing the quantity of hay over 32 weeks. Eight lean animals served as controls. All were subjected to the following: dual-energy x-ray absorptiometry, echocardiogram, cardiac magnetic resonance, electrophysiological study, and histological and molecular analyses (fatty infiltration, fibrosis, transforming growth factor ß1, and connexin 43). RESULTS: Sustained obesity was associated with increased left atrium (LA) pressure (p < 0.001), inflammation (p < 0.001), atrial transforming growth factor ß1 protein (p < 0.001), endothelin-B receptor expression (p = 0.04), atrial fibrosis (p = 0.01), epicardial fat infiltration (p < 0.001), electrophysiological abnormalities, and AF burden (p = 0.04). Connexin 43 expression was decreased in the obese group (p = 0.03). In this obese ovine model, 30% weight reduction was associated with reduction in total body fat (p < 0.001), LA pressure (p = 0.007), inflammation (p < 0.001), endothelin-B receptor expression (p = 0.01), atrial fibrosis (p = 0.01), increase in atrial effective refractory period (cycle length: 400 and 300 ms; p < 0.001), improved conduction velocity (cycle length: 400 and 300 ms; p = 0.01), decreased conduction heterogeneity (p < 0.001), and decreased AF inducibility (p = 0.03). Weight loss was associated with a nonsignificant reduction in epicardial fat infiltration in posterior LA (p = 0.34). CONCLUSIONS: Weight loss in an obese ovine model is associated with structural and electrophysiological reverse remodeling and a reduced propensity for AF. This provides evidence for the direct role of obesity in AF substrate and the role of weight reduction in patients with AF.


Assuntos
Fibrilação Atrial , Obesidade , Redução de Peso , Animais , Tecido Adiposo , Átrios do Coração/diagnóstico por imagem , Obesidade/complicações , Ovinos
18.
Cell Mol Neurobiol ; 41(3): 469-486, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32451728

RESUMO

Physical exercise (PE) and environmental enrichment (EE) can modulate immunity. However, the differential effects of short-term PE, EE, and PE + EE on neuroimmune mechanisms during normal aging has not been elucidated. Hence, a cohort of 3-, 8-, and 13-month-old immunologically unchallenged C57BL/6 wild-type mice were randomly assigned to either Control, PE, EE, or PE + EE groups and provided with either no treatment, a running wheel, a variety of plastic and wooden objects alone or in combination with a running wheel for seven weeks, respectively. Immunohistochemistry and 8-color flow cytometry were used to determine the numbers of dentate gyrus glial cells, and the proportions of CD4+ and CD8+ T cell numbers and their subsets from cervical lymph nodes, respectively. An increase in the number of IBA1+ microglia in the dentate gyrus at 5 and 10 months was observed after EE, while PE and PE + EE increased it only at 10 months. No change in astroglia number in comparison to controls were observed in any of the treatment groups. Also, all treatments induced significant differences in the proportion of specific T cell subsets, i.e., CD4+ and CD8+ T naïve (TN), central memory (TCM), and effector memory (TEM) cells. Our results suggest that in the short-term, EE is a stronger modulator of microglial and peripheral T cell subset numbers than PE and PE + EE, and the combination of short-term PE and EE has no additive effects.


Assuntos
Encéfalo/citologia , Vértebras Cervicais/citologia , Meio Ambiente , Linfonodos/citologia , Neuroglia/citologia , Condicionamento Físico Animal , Linfócitos T/imunologia , Animais , Antígenos CD/metabolismo , Astrócitos/citologia , Biomarcadores/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Giro Denteado/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Imunofenotipagem , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo
19.
Front Aging Neurosci ; 12: 596894, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33364934

RESUMO

Dystrophic neurites (DNs) are found in many neurological conditions such as traumatic brain injury and age-related neurodegenerative diseases. In Alzheimer's disease (AD) specifically, senile plaques containing silver-stained DNs were already described in the original literature defining this disease. These DNs could be both axonal and dendritic in origin, while axonal dystrophy relative to plaque formation has been more extensively studied. Here, we demonstrate an early occurrence of dendritic dystrophy in the hippocampal CA1 and subicular regions in human brains (n = 23) with primary age-related tauopathy (PART), with neurofibrillary tangle (NFT) burden ranging from Braak stages I to III in the absence of cerebral ß-amyloid (Aß) deposition. In Bielschowsky's silver stain, segmented fusiform swellings on the apical dendrites of hippocampal and subicular pyramidal neurons were observed in all the cases, primarily over the stratum radiatum (s.r.). The numbers of silver-stained neuronal somata and dendritic swellings counted over CA1 to subiculum were positively correlated among the cases. Swollen dendritic processes were also detected in sections immunolabeled for phosphorylated tau (pTau) and sortilin. In aged and AD brains with both Aß and pTau pathologies, silver- and immunolabeled dystrophic-like dendritic profiles occurred around and within individual neuritic plaques. These findings implicate that dendritic dystrophy can occur among hippocampal pyramidal neurons in human brains with PART. Therefore, as with the case of axonal dystrophy reported in literature, dendritic dystrophy can develop prior to Alzheimer-type plaque and tangle formation in the human brain.

20.
Clin Transl Immunology ; 9(10): e1191, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33082953

RESUMO

OBJECTIVES: Targeted immunotherapies such as chimeric antigen receptor (CAR)-T cells are emerging as attractive treatment options for glioblastoma, but rely on identification of a suitable tumor antigen. We validated a new target antigen for glioblastoma, fibroblast activation protein (FAP), by undertaking a detailed expression study of human samples. METHODS: Glioblastoma and normal tissues were assessed using immunostaining, supported by analyses of published transcriptomic datasets. Short-term cultures of glioma neural stem (GNS) cells were compared to cultures of healthy astrocytes and neurons using flow cytometry. Glioblastoma tissues were dissociated and analysed by high-parameter flow cytometry and single-cell transcriptomics (scRNAseq). RESULTS: Compared to normal brain, FAP was overexpressed at the gene and protein level in a large percentage of glioblastoma tissues, with highest levels of expression associated with poorer prognosis. FAP was also overexpressed in several paediatric brain cancers. FAP was commonly expressed by cultured GNS cells but absent from normal neurons and astrocytes. Within glioblastoma tissues, the strongest expression of FAP was around blood vessels. In fact, almost every tumor vessel was highlighted by FAP expression, whereas normal tissue vessels and cultured endothelial cells (ECs) lacked expression. Single-cell analyses of dissociated tumors facilitated a detailed characterisation of the main cellular components of the glioblastoma microenvironment and revealed that vessel-localised FAP is because of expression on both ECs and pericytes. CONCLUSION: Fibroblast activation protein is expressed by multiple cell types within glioblastoma, highlighting it as an ideal immunotherapy antigen to target destruction of both tumor cells and their supporting vascular network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...