Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(13): 9099-9108, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36950072

RESUMO

Rare-earth double perovskite oxides have intriguing magnetocaloric properties at cryogenic temperatures. In this study, Ho2NiMnO6 and Ho2CoMnO6 were synthesized using the sol-gel method, which crystallized in a monoclinic structure in the P21/n space group. The magnetic phase transition was observed at 81.2 K for Ho2NiMnO6 and 73.5 K for Ho2CoMnO6. The presence of a paramagnetic matrix and short-range ferromagnetic clusters causes magnetic disorder in these double perovskites, resulting in Griffiths phase formation. The Arrott plot confirms that compounds undergo second-order phase transition. At an applied magnetic field of 5 T, the maximum magnetic entropy change (-ΔS) for the studied compounds is 1.7 and 2.2 J kg-1 K-1, respectively. The transition metals Ni and Co in a double perovskite cause lattice distortion in the structural parameters and oxidation states of manganese (Mn3+/Mn4+), which changes the magnetic and magnetocaloric properties. The quantitative approach provides a systematic study of magnetocaloric properties of the rare earth double perovskite compounds with ferromagnetic 3d transition elements.

2.
Sci Rep ; 11(1): 20206, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642433

RESUMO

The crystal structure, cryogenic magnetic properties, and magnetocaloric performance of double perovskite Eu2NiMnO6 (ENMO), Gd2NiMnO6 (GNMO), and Tb2NiMnO6 (TNMO) ceramic powder samples synthesized by solid-state method have been investigated. X-ray diffraction structural investigation reveal that all compounds crystallize in the monoclinic structure with a P21/n space group. A ferromagnetic to paramagnetic (FM-PM) second-order phase transition occurred in ENMO, GNMO, and TNMO at 143, 130, and 112 K, respectively. Maximum magnetic entropy changes and relative cooling power with a 5 T applied magnetic field are determined to be 3.2, 3.8, 3.5 J/kgK and 150, 182, 176 J/kg for the investigated samples, respectively. The change in structural, magnetic, and magnetocaloric effect attributed to the superexchange mechanism of Ni2+-O-Mn3+ and Ni2+-O-Mn4+. The various atomic sizes of Eu, Gd, and Tb affect the ratio of Mn4+/Mn3+, which is responsible for the considerable change in properties of double perovskite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...