Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(26): 18617-18645, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38863825

RESUMO

In this review, the classification of magnetic materials exhibiting magnetoresistive properties is the focus of discussion because each material possesses different magnetic and electrical properties that influence the resulting magnetoresistance (MR) values. These properties depend on the structure and mechanism of the material. In this overview, the classification of magnetic materials with different structures is examined in several material groups, including the following: (1) perovskite structure (ABO3), (2) alloy, (3) spinel structure, and (4) Kagome magnet. This review summarizes the results of each material's properties based on experimental findings, and serves as a reference for studying the characteristics of each material.

2.
Phys Chem Chem Phys ; 26(26): 18343-18367, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38912550

RESUMO

This study investigates the effect of A-site disorder, characterized by the average ionic radius (〈rA〉) and the cation mismatch (σ2), on the structural, magnetic, critical behavior, and magnetic entropy changes in La0.7(Ba,Ca,Sr)0.3MnO3 manganites with trisubstituted Ba, Ca, and Sr. The sol-gel method was used to prepare polycrystalline samples. All series of compounds crystallize in rhombohedral symmetry with the R3̄c space group. A linear relationship between lattice parameters, unit cell volume, and 〈rA〉 was observed. This reveals an unusual behavior in the correlation between 〈rA〉 and σ2 concerning magnetic properties, which is attributed to the complex simultaneous trisubstitution of divalent ions. Energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were utilized to validate the chemical composition of compounds. All the samples crystallized in rhombohedral symmetry, and the lattice parameters increased continuously with increasing 〈rA〉. A-site disorder causes distortions in the Mn-O bond length and Mn-O-Mn bond angle in the MnO6 octahedral structure, which influences the double-exchange interaction and electronic bandwidth (W). The Curie temperature (TC) increases linearly with increasing W. The critical behavior around TC for all the samples was investigated by determining the values of the critical exponents (ß, γ, and δ) using the modified Arrott plot (MAP) method. The estimated critical exponents show that the unconventional model establishes a short-range ferromagnetic order. The maximum magnetic entropy change (-ΔSM) was obtained with the lowest 〈rA〉 and σ2 value. The analysis of the critical behavior and universal curve indicates a second-order phase transition (SOPT) nature for all samples.

3.
Phys Chem Chem Phys ; 26(20): 14476-14504, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38726818

RESUMO

In the pursuit of a clean and environmentally friendly future, magnetic refrigerator technology based on the magnetocaloric effect has been proposed as a replacement for conventional refrigeration technologies characterized by inefficient energy use, greenhouse gas emissions, and ozone depletion. This paper presents an in-depth exploration of the current state of research on magnetocaloric effect (MCE) materials by, examining various types of MCE materials and their respective potentials. The focus is particularly directed towards perovskite manganite materials because of their numerous advantages over other materials. These advantages include a wide working temperature range, easily adjustable Curie temperature around room temperature, excellent chemical stability, cost-effective production processes, negligible magnetic and thermal hysteresis properties, as well as competitive values for -ΔSM and ΔTad compared to other materials. Additionally, crucial parameters defining the MCE properties of perovskite manganite materials are comprehensively discussed, both at a fundamental level and in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...