Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(38): 7918-7927, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37721794

RESUMO

Formal reduction potentials of highly oxidizing and short-lived radical cations of substituted biphenyls generated by pulse radiolysis in 1,2-dichloroethane (DCE) were measured using a redox equilibrium ladder method. The effect of halide ion-radical interactions on reduction potentials of biphenyls was examined by utilizing the ability of DCE to release Cl- in the vicinity of the radical cation. The Hammett correlation of measured potentials across a range of over 700 mV shows saturation at high Hammett sigma values. This effect has been explained by both ion-pairing and hemicolligation interactions between biphenyl radical cations and Cl- and appears to modulate reduction potentials by as much as 400 mV. This finding offers a convenient way to manipulate the energetics of electron transfer involving organic redox species.

2.
Inorg Chem ; 62(20): 7877-7889, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37159570

RESUMO

A dicationic Re bipyridine-type complex, fac-Re(6,6'-(2-((trimethylammonio)-methyl)phenyl)-2,2'-bipyridine )(CO)3Cl hexafluorophosphate (12+), has been synthesized, and its electrochemical behavior under Ar and CO2 has been investigated. The presence of pendent tetra-alkylammonium cations induces an anodic shift in the electrocatalytic potential for CO2 reduction relative to structurally similar model complexes. The electrochemical mechanisms in anhydrous CH3CN and in the presence of weak acids (water or trifluoroethanol) have been analyzed using cyclic voltammetry assisted by infrared spectroelectrochemistry and theoretical calculations. The dication enables catalysis at a diminished potential through Coulombic stabilization of the doubly reduced pentacoordinate species, its CO2 adduct, the hydroxide anion, and the conjugate base formed during acid-assisted C-OH bond cleavage of the metallocarboxylic acid to the metallocarbonyl and H2O. The major reduction product is CO, but in the presence of trifluoroethanol, formate is also produced with 14% Faradaic efficiency.

3.
Acc Chem Res ; 55(5): 616-628, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35133133

RESUMO

Recycling of carbon dioxide to fuels and chemicals is a promising strategy for renewable energy storage. Carbon dioxide conversion can be achieved by (i) artificial photosynthesis using photoinduced electrons; (ii) electrolysis using electricity produced by photovoltaics; and (iii) thermal CO2 hydrogenation using renewable H2. The focus of our group's research is on molecular catalysts, in particular coordination complexes of transition metals (e.g., Mn, Re, and Ru), which offer versatile platforms for mechanistic studies of photo- and electrochemical CO2 reduction. The interactions of catalytic intermediates with Lewis or Brønsted acids, hydrogen-bonding moieties, solvents, cations, etc., that function as promoters or cofactors have become increasingly important for efficient catalysis. These interactions may have dramatic effects on selectivity and rates by stabilizing intermediates or lowering transition state barriers, but they are difficult to elucidate and challenging to predict. We have been carrying out experimental and theoretical studies of CO2 reduction using molecular catalysts toward addressing mechanisms of efficient CO2 reduction systems with emphasis on those containing intramolecular (or pendent) and intermolecular (solution phase) additives. This Account describes the identification of reaction intermediates produced during CO2 reduction in the presence of triethanolamine or ionic liquids, the benefits of hydrogen-bonding interactions among intermediates or cofactors, and the complications of pendent phenolic donors/phenoxide bases under electrochemical conditions.Triethanolamine (TEOA) is a common sacrificial electron donor for photosensitizer excited state reductive quenching and has a long history of use in photocatalytic CO2 reduction. It also functions as a Brønsted base in conjunction with more potent sacrificial electron donors, such as 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH). Deprotonation of the BIH•+ cation radical promotes irreversible photoinduced electron transfer by preventing charge recombination. Despite its wide use, most research to date has not considered the broader reactions of TEOA, including its direct interaction with CO2 or its influence on catalytic intermediates. We found that in acetonitrile, TEOA captures CO2 in the form of a zwitterionic adduct without any metal catalyst. In the presence of ruthenium carbonyl catalysts bearing α-diimine ligands, it participates in metal hydride formation, accelerates hydride transfer to CO2 to form the bound formate intermediate, and assists in the dissociation of formate anion from the catalyst ( J. Am. Chem. Soc. 2020, 142, 2413-2428).Hydrogen bonding and acid/base promoters are understood to interact with key catalytic intermediates, such as the metallocarboxylate or metallocarboxylic acid during CO2 reduction. The former is a high energy species, and hydrogen-bonding or Lewis acid-stabilization are beneficial. We have found that imidazolium-based ionic liquid cations can stabilize the doubly reduced form of the [ReCl(bpy)(CO)3] (bpy = 2,2'-bipyridine) electrocatalyst through both hydrogen-bonding and π-π interactions, resulting in CO2 reduction occurring at a more positive potential with a higher catalytic current ( J. Phys. Chem. Lett. 2014, 5, 2033-2038). Hydrogen bonding interactions between Lewis basic methoxy groups in the second coordination sphere of a Mn-based catalyst and the OH group of the Mn-COOH intermediate in the presence of a Brønsted acid were also found to promote C-(OH) bond cleavage, enabling access to a low-energy protonation-first pathway for CO2 reduction ( J. Am. Chem. Soc. 2017, 139, 2604-2618).The kinetics of forming the metallocarboxylic acid can be enhanced by internal acids, and its proton-induced C-OH bond cleavage to the metallocarbonyl and H2O is often the rate-limiting step. Therefore, proton movement organized by pendent hydrogen-bonding networks may also accelerate this step. In contrast, during electrolysis, OH groups in the second coordination sphere are deprotonated to the oxyanions, which deter catalytic CO2 reduction by directly binding CO2 to form the carbonate or by making an M-O bond in competition with CO2 binding ( Inorg. Chem. 2016, 55, 4582-4594). Our results emphasize that detailed mechanistic research is critical in discovering the design principles for improved catalysts.


Assuntos
Dióxido de Carbono , Rutênio , Dióxido de Carbono/química , Catálise , Elétrons , Oxirredução
4.
Inorg Chem ; 59(17): 12187-12199, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32804491

RESUMO

A new Re bipyridine-type complex, namely, fac-Re(pmbpy)(CO)3Cl (pmbpy = 4-phenyl-6-(2-hydroxy-phenyl)-2,2'-bipyridine), 1, carrying a single OH moiety as local proton source, has been synthesized, and its electrochemical behavior under Ar and under CO2 has been characterized. Two isomers of 1, namely, 1-cis characterized by the proximity of Cl to OH and 1-trans, are identified. The interconversion between 1-cis and 1-trans is clarified by DFT calculations, which reveal two transition states. The energetically lower pathway displays a non-negligible barrier of 75.5 kJ mol-1. The 1e- electrochemical reduction of 1 affords the neutral intermediate 1-OPh, formally derived by reductive deprotonation and loss of Cl- from 1. 1-OPh, which exhibits an entropically favored intramolecular Re-O bond, has been isolated and characterized. The detailed electrochemical mechanism is demonstrated by combined chemical reactivity, spectroelectrochemistry, spectroscopic (IR and NMR), and computational (DFT) approaches. Comparison with previous Re and Mn derivatives carrying local proton sources highlights that the catalytic activity of Re complexes is more sensitive to the presence of local OH groups. Similar to Re-2OH (2OH = 4-phenyl-6-(phenyl-2,6-diol)-2,2'-bipyridine), 1 and Mn-1OH display a selective reduction of CO2 to CO. In the case of the Re bipyridine-type complex, the formation of a relatively stable Re-O bond and a preference for phenolate-based reactivity with CO2 slightly inhibit the electrocatalytic reduction of CO2 to CO, resulting in a low TON value of 9, even in the presence of phenol as a proton source.

5.
Chem Commun (Camb) ; 55(42): 5870-5873, 2019 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-31041935

RESUMO

The equilibrium constants of the hydrogen bonding (HB) between hydroxylic donors, ROH, and an MLCT-excited Ru(bpy)2(bpz)2+ complex, 1(T), correlated with ROH empirical HB acidities, which could be used for evaluating the unimolecular rate constants of concerted electron-proton transfer within the H-bonded phenol-1(T) exciplexes.

6.
Inorg Chem ; 57(9): 5486-5498, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29696969

RESUMO

The cobalt complexes CoIIL1(PF6)2 (1; L1 = 2,6-bis[2-(2,2'-bipyridin-6'-yl)ethyl]pyridine) and CoIIL2(PF6)2 (2; L2 = 2,6-bis[2-(4-methoxy-2,2'-bipyridin-6'-yl)ethyl]pyridine) were synthesized and used for photocatalytic CO2 reduction in acetonitrile. X-ray structures of complexes 1 and 2 reveal distorted trigonal-bipyramidal geometries with all nitrogen atoms of the ligand coordinated to the Co(II) center, in contrast to the common six-coordinate cobalt complexes with pentadentate polypyridine ligands, where a monodentate solvent completes the coordination sphere. Under electrochemical conditions, the catalytic current for CO2 reduction was observed near the Co(I/0) redox couple for both complexes 1 and 2 at E1/2 = -1.77 and -1.85 V versus Ag/AgNO3 (or -1.86 and -1.94 V vs Fc+/0), respectively. Under photochemical conditions with 2 as the catalyst, [Ru(bpy)3]2+ as a photosensitizer, tri- p-tolylamine (TTA) as a reversible quencher, and triethylamine (TEA) as a sacrificial electron donor, CO and H2 were produced under visible-light irradiation, despite the endergonic reduction of Co(I) to Co(0) by the photogenerated [Ru(bpy)3]+. However, bulk electrolysis in a wet CH3CN solution resulted in the generation of formate as the major product, indicating the facile production of Co(0) and [Co-H] n+ ( n = 1 and 0) under electrochemical conditions. The one-electron-reduced complex 2 reacts with CO to produce [Co0L2(CO)] with νCO = 1894 cm-1 together with [CoIIL2]2+ through a disproportionation reaction in acetonitrile, based on the spectroscopic and electrochemical data. Electrochemistry and time-resolved UV-vis spectroscopy indicate a slow CO binding rate with the [CoIL2]+ species, consistent with density functional theory calculations with CoL1 complexes, which predict a large structural change from trigonal-bipyramidal to distorted tetragonal geometry. The reduction of CO2 is much slower than the photochemical formation of [Ru(bpy)3]+ because of the large structural changes, spin flipping in the cobalt catalytic intermediates, and an uphill reaction for the reduction to Co(0) by the photoproduced [Ru(bpy)3]+.

7.
J Am Chem Soc ; 139(23): 7843-7854, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28570063

RESUMO

Supramolecular mixed metal complexes combining the trimetallic chromophore [{(bpy)2Ru(dpp)}2Ru(dpp)]6+ (Ru3) with [Rh(bpy)Cl2]+ or [RhCl2]+ catalytic fragments to form [{(bpy)2Ru(dpp)}2Ru(dpp)RhCl2(bpy)](PF6)7 (Ru3Rh) or [{(bpy)2Ru(dpp)}2Ru(dpp)]2RhCl2(PF6)13 (Ru3RhRu3) (bpy = 2,2'-bipyridine and dpp = 2,3-bis(2-pyridyl)pyrazine) catalyze the photochemical reduction of protons to H2. This first example of a heptametallic Ru,Rh photocatalyst produces over 300 turnovers of H2 upon photolysis of a solution of acetonitrile, water, triflic acid, and N,N-dimethylaniline as an electron donor. In contrast, the tetrametallic Ru3Rh produces only 40 turnovers of H2 due to differences in the excited state properties and nature of the catalysts upon reduction as ascertained from electrochemical data, transient absorption spectroscopy, and flash-quench experiments. While the lowest unoccupied molecular orbital of Ru3Rh is localized on a bridging ligand, it is Rh-centered in Ru3RhRu3 facilitating electron collection at Rh in the excited state and reductively quenched state. The Ru → Rh charge separated state of Ru3RhRu3 is endergonic with respect to the emissive Ru → dpp 3MLCT excited and cannot be formed by static electron transfer quenching of the 3MLCT state. Instead, a mechanism of subnanosecond charge separation from high lying states is proposed. Multiple reductions of Ru3 and Ru3Rh using sodium amalgam were carried out to compare UV-vis absorption spectra of reduced species and to evaluate the stability of highly reduced complexes. The Ru3 and Ru3Rh can be reduced by 10 and 13 electrons, respectively, to final states with all bridging ligands doubly reduced and all bpy ligands singly reduced.

8.
Faraday Discuss ; 198: 301-317, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28280836

RESUMO

We prepared electron-rich derivatives of [Ir(tpy)(ppy)Cl]+ with modification of the bidentate (ppy) or tridentate (tpy) ligands in an attempt to increase the reactivity for CO2 reduction and the ability to transfer hydrides (hydricity). Density functional theory (DFT) calculations reveal that complexes with dimethyl-substituted ppy have similar hydricities to the non-substituted parent complex, and photocatalytic CO2 reduction studies show selective CO formation. Substitution of tpy by bis(benzimidazole)-phenyl or -pyridine (L3 and L4, respectively) induces changes in the physical properties that are much more pronounced than from the addition of methyl groups to ppy. Theoretical data predict [Ir(L3)(ppy)(H)] as the strongest hydride donor among complexes studied in this work, but [Ir(L3)(ppy)(NCCH3)]+ cannot be reduced photochemically because the excited state reduction potential is only 0.52 V due to the negative ground state potential of -1.91 V. The excited state of [Ir(L4)(ppy)(NCCH3)]2+ is the strongest oxidant among complexes studied in this work and the singly-reduced species is formed readily upon photolysis in the presence of tertiary amines. Both [Ir(L3)(ppy)(NCCH3)]+ and [Ir(L4)(ppy)(NCCH3)]2+ exhibit electrocatalytic current for CO2 reduction. While a significantly greater overpotential is needed for the L3 complex, a small amount of formate (5-10%) generation in addition to CO was observed as predicted by the DFT calculations.

9.
J Am Chem Soc ; 138(36): 11536-49, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27538049

RESUMO

Proton-coupled electron transfer (PCET) reactions were studied in acetonitrile for a Photosystem II (PSII)-inspired [Ru(bpy)2(phen-imidazole-Ph(OH)((t)Bu)2)](2+), in which Ru(III) generated by a flash-quench sequence oxidizes the appended phenol and the proton is transferred to the hydrogen-bonded imidazole base. In contrast to related systems, the donor and acceptor are strongly coupled, as indicated by the shift in the Ru(III/II) couple upon phenol oxidation, and intramolecular oxidation of the phenol by Ru(III) is energetically favorable by both stepwise and concerted pathways. The phenol oxidation occurs via a stepwise ET-PT mechanism with kET = 2.7 × 10(7) s(-1) and a kinetic isotope effect (KIE) of 0.99 ± 0.03. The electron transfer reaction was characterized as adiabatic with λDA = 1.16 eV and 280 < HDA < 540 cm(-1) consistent with strong electronic coupling and slow solvent dynamics. Reduction of the phenoxyl radical by the quencher radical was examined as the analogue of the redox reaction between the PSII tyrosyl radical and the oxygen-evolving complex. In our PSII-inspired complex, the recombination reaction activation energy is <2 kcal mol(-1). The reaction is nonadiabatic (VPCET ≈ 22 cm(-1) (H) and 49 cm(-1) (D)) and concerted, and it exhibits an unexpected inverse KIE = 0.55 that is attributed to greater overlap of the reactant vibronic ground state with the OD vibronic states of the proton acceptor due to the smaller quantum spacing of the deuterium vibrational levels.

10.
Inorg Chem ; 55(9): 4582-94, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27077460

RESUMO

Ruthenium complexes with proton-responsive ligands [Ru(tpy)(nDHBP)(NCCH3)](CF3SO3)2 (tpy = 2,2':6',2″-terpyridine; nDHBP = n,n'-dihydroxy-2,2'-bipyridine, n = 4 or 6) were examined for reductive chemistry and as catalysts for CO2 reduction. Electrochemical reduction of [Ru(tpy)(nDHBP)(NCCH3)](2+) generates deprotonated species through interligand electron transfer in which the initially formed tpy radical anion reacts with a proton source to produce singly and doubly deprotonated complexes that are identical to those obtained by base titration. A third reduction (i.e., reduction of [Ru(tpy)(nDHBP-2H(+))](0)) triggers catalysis of CO2 reduction; however, the catalytic efficiency is strikingly lower than that of unsubstituted [Ru(tpy)(bpy)(NCCH3)](2+) (bpy = 2,2'-bipyridine). Cyclic voltammetry, bulk electrolysis, and spectroelectrochemical infrared experiments suggest the reactivity of CO2 at both the Ru center and the deprotonated quinone-type ligand. The Ru carbonyl formed by the intermediacy of a metallocarboxylic acid is stable against reduction, and mass spectrometry analysis of this product indicates the presence of two carbonates formed by the reaction of DHBP-2H(+) with CO2.

12.
Inorg Chem ; 54(16): 8148-57, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26247428

RESUMO

The supramolecular water reduction photocatalysts [{(Ph2phen)2Ru(dpp)}2RhX2](PF6)5 (Ph2phen = 4,7-diphenyl-1,10-phenanthroline, dpp =2,3-bis(2-pyridyl)pyrazine X = Cl, Br) are efficient electrocatalysts for the reduction of CF3SO3H, CF3CO2H, and CH3CO2H to H2 in DMF or DMF/H2O mixtures. The onset of catalytic current occurs at -0.82 V versus Ag/AgCl for CF3SO3H, -0.90 V for CF3CO2H, and -1.1 V for CH3CO2H with overpotentials of 0.61, 0.45, and 0.10 V, respectively. In each case, catalysis is triggered by the first dpp ligand reduction implicating the dpp as an electron reservoir in catalysis. A new species with Epc ∼ -0.75 V was observed in the presence of stoichiometric amounts of strong acid, and its identity is proposed as the Rh(H)(III/II) redox couple. H2 was produced in 72-85% Faradaic yields and 95-116 turnovers after 2 h and 435 turnovers after 10 h of bulk electrolysis. The identities of Rh(I) species upon reduction have been studied. In contrast to the expected dissociation of halides in the Rh(I) state, the halide loss depends on solvent and water content. In dry CH3CN, in which Cl(-) is poorly solvated, a [Ru] complex dissociates and [(Ph2phen)2Ru(dpp)Rh(I)Cl2](+) and [(Ph2phen)2Ru(dpp)](2+) are formed. In contrast, for X = Br(-), the major product of reduction is the intact trimetallic Rh(I) complex [{(Ph2phen)2Ru(dpp)}2Rh(I)](5+). Chloride loss in CH3CN is facilitated by addition of 3 M H2O. In DMF, the reduced species is [{(Ph2phen)2Ru(dpp)}2Rh(I)](5+) regardless of X = Cl(-) or Br(-).

13.
Chem Commun (Camb) ; 51(65): 12966-9, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26176022

RESUMO

A new Ru(II)Rh(III) structural motif [(bpy)2Ru(dpp)RhCl(tpy)](4+) with one halide on the Rh(III) center demonstrates light-driven proton reduction ability, establishing that two halide ligands are not mandatory despite all prior systems containing a cis-RhCl2 catalytic site. This new design provides a novel approach to modulate Rh(III) redox behavior and catalytic activity with insight into catalytic intermediates.

14.
J Phys Chem B ; 119(24): 7457-66, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-25697424

RESUMO

Proton responsive ligands offer control of catalytic reactions through modulation of pH-dependent properties, second coordination sphere stabilization of transition states, or by providing a local proton source for multiproton, multielectron reactions. Two fac-[Re(I)(α-diimine)(CO)3Cl] complexes with α-diimine = 4,4'- (or 6,6'-) dihydroxy-2,2'-bipyridine (4DHBP and 6DHBP) have been prepared and analyzed as electrocatalysts for the reduction of carbon dioxide. Consecutive electrochemical reduction of these complexes yields species identical to those obtained by chemical deprotonation. An energetically feasible mechanism for reductive deprotonation is proposed in which the bpy anion is doubly protonated followed by loss of H2 and 2H(+). Cyclic voltammetry reveals a two-electron, three-wave system owing to competing EEC and ECE pathways. The chemical step of the ECE pathway might be attributed to the reductive deprotonation but cannot be distinguished from chloride dissociation. The rate obtained by digital simulation is approximately 8 s(-1). Under CO2, these competing reactions generate a two-slope catalytic waveform with onset potential of -1.65 V vs Ag/AgCl. Reduction of CO2 to CO by the [Re(I)(4DHBP-2H(+))(CO)3](-) suggests the interaction of CO2 with the deprotonated species or a third reduction followed by catalysis. Conversely, the reduced form of [Re(6DHBP)(CO)3Cl] converts CO2 to CO with a single turnover.

15.
Inorg Chem ; 52(23): 13314-24, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24245990

RESUMO

Two new complexes, [(bpy)2Ru(dpp)Rh(I)(COD)](PF6)3 and [(Me2bpy)2Ru(dpp)Rh(I)(COD)](PF6)2(BF4) (bpy = 2,2'-bipyridine, Me2bpy = 4,4'-dimethyl-2,2'-bipyridine, dpp = 2,3-bis(2-pyridyl)pyrazine, and COD = 1,5-cyclooctadiene), representing a new Ru(II),Rh(I) structural motif, have been prepared and characterized by mass spectrometry, (1)H NMR spectroscopy, electrochemistry, electronic absorption spectroscopy, and emission spectroscopy. These two complexes represent a new type of supramolecular complex with a [(TL)2Ru(dpp)](2+) (TL = terminal ligand) light absorber (LA) coupled to a Rh(I) center and are models for Ru(II),Rh(I) intermediates in the photochemical reduction of water using dpp-bridged Ru(II),Rh(III) photocatalysts. Electrochemical study reveals overlapping reversible Ru(II/III) and irreversible Rh(I/II/III) oxidations and a quasi-reversible dpp(0/-) reduction, demonstrating that the lowest unoccupied molecular orbital (LUMO) is dpp(π*) based. The COD ligand is sterically bulky, displaying steric repulsions between hydrogen atoms on the alkene of COD and dpp about the square planar Rh(I) center. An interesting reactivity occurs in coordinating solvents such as CH3CN, where Rh(I) substitution leads to an equilibrium between the Ru(II),Rh(I) bimetallic and [(TL)2Ru(dpp)](2+) and [Rh(I)(COD)(solvent)2](+) monometallic species. The electronic absorption spectra of both complexes feature transitions at ca. 500 nm attributed to a Ru(dπ) → dpp(π*) metal-to-ligand charge transfer (MLCT) transition that is slightly red-shifted from the Ru synthon upon Rh(I) complexation. The methylation of TL on the Ru impacts the electrochemical and optical properties in a minor but predictable manner. The photophysical studies, by comparison with the model complex [{Ru(bpy)2}2(dpp)](PF6)4 and related Rh(III) complex [(bpy)2Ru(dpp)Rh(III)Cl2(phen)](PF6)3, reveal the expected absence of a Ru(dπ) → Rh(dσ*) (3)MMCT state (metal-to-metal charge transfer) in the title complexes, which is present in Rh(III) systems. The absence of this (3)MMCT state in Ru(II),Rh(I) complexes results in a longer lifetime and higher emission quantum yield for the Ru(dπ) → dpp(π*) (3)MLCT state than [(bpy)2Ru(dpp)Rh(III)Cl2(phen)](PF6)3. Both complexes display photocatalytic hydrogen production activity in the presence of water and a sacrificial electron donor, with the [(bpy)2Ru(dpp)Rh(I)(COD)](PF6)3 possessing a higher catalytic activity than the methyl analogue. Both display low activities, hypothesized to occur due to steric crowding about the Rh(I) site.

16.
Dalton Trans ; 40(46): 12595-606, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22011928

RESUMO

The susceptibility of a prototypical hydrogen phosphonate to undergo P-H activation upon treatment with alkynylgold complexes has been studied. Dynamic solution behavior was observed during reactions involving triphenylphosphine ligated substrates and was attributed to rapid phosphine exchange between the alkynylgold starting material and the gold phosphonate product. The use of bulky biaryldialkylphosphine ligands eliminated the fluxional behavior, but did not significantly slow the rate of P-H activation. Similarly, changing the supporting ligand to an N-heterocyclic carbene did not significantly slow the rate of the reaction. Despite a number of reports outlining the functionalization of propargyl alcohols using gold catalysts, incorporating these groups into the architecture of the alkynylgold substrates did not alter the product distributions. Although the chemistry tolerated a range of supporting ligands, incorporating electron donating groups into the alkyne increased the rate of the reaction while electron-withdrawing groups slowed the reaction. A possible mechanism for the process includes a transition state containing significant pi-contribution from the alkyne. Due to the high yields of gold phosphonates obtained in this chemistry as well as the mild conditions of the reactions, the interception of intermediates/catalysts by substrates or ligands containing labile P-H donors is an issue that must be circumvented when designing or developing a gold catalyzed reaction that proceeds through alkynylgold intermediates.

17.
Inorg Chem ; 50(15): 7172-88, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21714488

RESUMO

Heteroleptic copper(I) complexes of the types [Cu(N,N)(P,P)] and [Cu(N,O)(P,P)], where (P,P) = phosphine (PPh(3)) or diphosphine (dppb, DPEPHOS, XANTPHOS), (N,N) = pyrrole-2-phenylcarbaldimine, 2PyN: [Cu(2PyN)(PPh(3))(2)] (1), [Cu(2PyN) (dppb)] (2), [Cu(2PyN)(DPEPHOS)] (3), and [Cu(2PyN)(XANTPHOS)] (4), (N,N) = indole-2-phenylcarbaldimine, 2IndN: [Cu(2IndN)(DPEPHOS)] (8), and (N,O) = pyrrole-2-carboxaldehyde, 2PyO: [Cu(2PyO)(DPEPHOS)] (5), [Cu(2PyO)(XANTPHOS)] (6), or (N,O) = indole-2-carboxaldehyde, 2IndO: [Cu(2IndO)(DPEPHOS)] (7), were synthesized and characterized by multinuclear NMR spectroscopy, electronic absorption spectroscopy, fluorescence spectroscopy, and X-ray crystallography (1-3, 5-8). The complexes with aldimine ligands are thermally stable, and sublimation of 2-4 was possible at T = 230-250 °C under vacuum. All complexes exhibit long-lived emission in solution, in the solid state, and in frozen glasses. The excited states have been assigned as mixed intraligand and metal-to-ligand charge transfer (3)(MLCT + π-π*) transitions through analysis of the photophysical properties and DFT calculations on representative examples.

18.
Inorg Chem ; 50(8): 3431-41, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21417454

RESUMO

A series of heteroleptic copper(I) complexes incorporating amido-triazole and diphosphine ligands, [Cu(I)(N-phenyl-2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline)(dppb)] (1), [Cu(I)(N-(4-methylphenyl)-2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline)(dppb)] (2), [Cu(I)(N-(4-methoxyphenyl)-2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline)(dppb)] (3), [Cu(I)(N-(4-chlorophenyl)-2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline)(dppb)] (4), [Cu(I)(2,6-dimethyl-N-[2-(1-phenyl-1H-1,2,3-triazol-4-yl)phenyl]aniline)(dppb)] (5), [Cu(I)(2,6-dimethyl-N-[2-(1-benzyl-1H-1,2,3-triazol-4-yl)phenyl]aniline)(dppb)] (6), (dppb = 1,2-bis(diphenylphosphino)benzene), have been prepared. The complexes adopt a distorted tetrahedral geometry in the solid state with the amido-triazole ligand forming a six-member ring with the Cu(I) ion. The complexes exhibit long-lived photoluminescence with colors ranging from yellow to red-orange in the solid state, in frozen glass at 77 K, and in fluid solution with modest quantum yields of up to 0.022. Electrochemically, complexes 1-4 show irreversible oxidation waves while 5 and 6 are characterized by quasi-reversible oxidations as determined by cyclic voltammetry. For 1-4, the emission energy and oxidation potential are found to vary linearly with the Hammett parameter σ(p) of the substituent in the para position of the amido ligand, while in 5 and 6, large differences in emission are observed because of the nature of N3 substitution in the triazole ring. Density functional theory calculations have been performed on the singlet ground states (S(o)) of all complexes at the BP86/6-31G(d) level to assist in assignment of the excited states. On the basis of both experimental and computational results, we have assigned the excited states as intraligand + metal-to-ligand charge transfer (3)(ILCT+MLCT) or ligand-to-ligand charge transfer mixed with MLCT (3)(MLCT +LLCT) in these complexes.


Assuntos
Amidas/química , Cobre/química , Luminescência , Compostos Organometálicos/química , Triazóis/química , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Teoria Quântica
19.
J Am Chem Soc ; 133(10): 3300-3, 2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-21322633

RESUMO

In contrast to 2-substituted pyrrole enones, furyl and benzofuryl enones do not undergo the Nazarov electrocyclization. Instead, these furyl and benzofuryl enones exhibit unusual rearrangement sequences in the presence of catalytic amounts of [IrBr(CO)(DIM)((R)-(+)-BINAP)](SbF(6))(2) (1; DIM = diethylisopropylidene malonate) and AgSbF(6) (1:1). A 1,2-H shift followed by intramolecular Friedel-Crafts alkylation leads to synthetically valuable cyclohexanones with furanylic quaternary centers. The electrophilicity of 1 is essential for this rearrangement.

20.
J Am Chem Soc ; 132(35): 12307-18, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20704268

RESUMO

Gold(I) bis(acetylide) complexes [PPN][AuR(2)] (1-3) where PPN = bis(triphenylphosphine)iminium) and R = ethisterone (1); 1-ethynylcyclopentanol (2); 1-ethynylcyclohexanol (3) have been prepared. The reaction of 1 with [Cu(MeCN)(4)][PF(6)] in a 1:1 or 3:2 ratio provides the octanuclear complex [Au(4)Cu(4)(ethisterone)(8)] (4) or pentanuclear complex [PPN][Au(3)Cu(2)(ethisterone)(6)] (5). Complexes 2 and 3 react with [Cu(MeCN)(4)][PF(6)] to form only pentanuclear Au(I)/Cu(I) complexes [PPN][Au(3)Cu(2)(1-ethynylcyclopentanol)(6)] (6) and [PPN][Au(3)Cu(2)(1-ethynylcyclohexanol)(6)] (7). X-ray crystallographic studies of 1-3 reveal nontraditional hydrogen bonding between hydroxyl groups and the acetylide units of adjacent molecules. Complexes 6 and 7 each form polymorphs in which the structures (6 a,b and 7 a,b,c) differ by Au...Au, Au...Cu, and Cu-C distances. The polymorphs exhibit different emission energies with colors ranging from blue to yellow in the solid state. In solution, pentanuclear clusters 5-7 emit with lambda(max) = 570-580 nm and Phi = 0.05-0.19. Complex 4 emits at 496 nm in CH(2)Cl(2) with a quantum yield of 0.65. Complex 5 exists in equilibrium with 1 and 4 in the presence of methanol, ethanol, ethyl acetate, or water. This equilibrium has been probed by X-ray crystallography, NMR spectroscopy, and luminescence experiments. DFT calculations have been performed to analyze the orbitals involved in the electronic transitions of 4, 6, and 7.


Assuntos
Alcinos/química , Ligas/química , Luminescência , Compostos Organometálicos/síntese química , Esteroides/química , Cobre/química , Cristalografia por Raios X , Ouro/química , Ligantes , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...