Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 9: 611952, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937226

RESUMO

Endocannabinoids (eCBs) and transient receptor potential (TRP) channels are associated with thermoregulation; however, there are many gaps in the understanding of how these signaling systems work together in responding to changes in temperature. TRPV1, a calcium-permeable ion channel, is activated by capsaicin, elevated temperature, the eCB Anandamide, and over 15 additional endogenous lipids. There is also evidence for signaling crosstalk between TRPV1 and the eCB receptor, CB1. We recently found that activation of TRPV1-HEK cells by capsaicin increases the production of the eCB, 2-arachidonoyl glycerol (2-AG), suggesting a molecular link between these receptors. Here, we tested the hypothesis that TRPV1 activation by capsaicin drives regulation of a wider-range of lipid signaling molecules and is time and dose-dependent. We also tested the hypothesis that changes in temperature that drive changes in calcium mobilization in TRPV1-HEK will likewise drive similar changes in lipid signaling molecule regulation. Lipid analysis was conducted by partial purification of methanolic extracts on C18 solid phase extraction columns followed by HPLC/MS/MS. Capsaicin increased the release of 2-acyl glycerols (2-AG, 2-linoleoyl glycerol, 2-oleoyl glycerol), in a concentration- and time-dependent manner, whereas levels of N-acyl ethanolamines (NAEs), including Anandamide, were significantly decreased. Analogous changes in 2-acyl glycerols and NAEs were measured upon ramping the temperature from 37 to 45°C. In contrast, opposite effects were measured when analyzing lipids after they were maintained at 27°C and then quickly ramped to 37°C, wherein 2-acyl glycerol levels decreased and NAEs increased. These results provide further evidence that the eCB system and TRPV1 have integrated signaling functions that are associated with the molecular response to temperature variation.

2.
Cannabis Cannabinoid Res ; 3(1): 228-241, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30515459

RESUMO

Introduction: Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are bioactive cannabinoids. We recently showed that acute THC administration drives region-dependent changes in the mouse brain lipidome. This study tested the hypothesis that cell lines representing cell types present in the central nervous system (CNS), neurons (N18 cells), astrocytes (C6 glioma cells), and microglia (BV2 cells) would respond differently to THC, CBD, or their combination. This experimental strategy also allowed us to test the hypothesis that THC and CBD are metabolized differently if presented in combination and to test the hypothesis that responses to CBD are not like the fatty acid amide hydrolase (FAAH) inhibitor URB597. Finally, we tested the hypothesis that CBD's CNS effects would differ in the N-acyl phosphatidyl ethanolamine-specific phospholipase D (NAPE-PLD) knockout (KO) compared to wild-type (WT) mice. Methods: N18, C6, and BV2 cells were stimulated with 1 µM THC, 1 µM CBD, 1 µM THC:CBD, 1 µM URB597, or vehicle for 2 h and lipids extracted. Adult female WT and NAPE-PLD KO mice were injected with 3 mg/kg CBD or vehicle i.p., brains collected 2 h later, eight brain regions dissected, and lipids extracted. Extracted lipids were characterized and quantified using high-pressure liquid chromatography coupled with tandem mass spectrometry (HPLC/MS/MS). Results: Lipid levels in each cell type were differentially affected by THC, CBD, or THC:CBD with a few exceptions. In all cell lines, THC increased levels of arachidonic acid and CBD increased levels of N-acyl ethanolamines (NAEs), including N-arachidonoyl ethanolamine. More THC remained when cells were coincubated with CBD; however, levels of THC metabolites were cell-type dependent. CBD and URB597 caused very different lipid profiles in the cell-based assays with the primary similarity being increases in NAEs. CBD increased levels of NAEs in the WT hippocampus, cerebellum, thalamus, cortex, midbrain, and brainstem; however, NAEs did not increase in any brain region after CBD in NAPE-PLD KO mice. Conclusions: CBD and THC differentially modify the lipidome of the brain and CNS-type cell lines. Increases in NAEs observed after CBD treatment had previously been attributed to FAAH inhibition; however, data here suggest the alternative hypothesis that CBD is activating NAPE-PLD to increase NAE levels.

3.
Neurobiol Pain ; 1: 28-36, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29430557

RESUMO

Exposure to airborne toxins can trigger headaches, but the mechanisms are not well understood. Some environmental toxins, such as acrolein, activate transient receptor potential ankyrin 1 (TRPA1), a receptor involved in pain sensation that is highly expressed in the trigeminovascular system. It has been shown in rat models that repeated exposure to acrolein induces trigeminovascular sensitization to both TRPA1 and TRP vanilloid 1 (TRPV1) agonists, a phenomenon linked to headache. In this study, we test the hypothesis that the sensitization of trigeminovascular responses in rats after acrolein exposure via inhalation is associated with changes in levels of endogenous lipids, including TRPV1 agonists, in the trigeminal ganglia, trigeminal nucleus, and cerebellum. Lipidomics analysis of 80 lipids was performed on each tissue after acute acrolein, chronic acrolein, or room air control. Both acute and chronic acrolein exposure drove widespread alterations in lipid levels. After chronic acrolein exposure, levels of all 6 N-acyl ethanolamines in the screening library, including the endogenous cannabinoid and TRPV1 agonist, N-arachidonoyl ethanolamine, were elevated in trigeminal tissue and in the cerebellum. This increase in TRPV1 ligands by acrolein exposure may indicate further downstream signaling, in that we also show here that a combination of these TRPV1 endogenous agonists increases the potency of the individual ligands in TRPV1-HEK cells. In addition to these TRPV1 agonists, 3 TRPV3 antagonists, 4 TRPV4 agonists, and 25 orphan lipids were up and down regulated after acrolein exposure. These data support the hypothesis that lipid signaling may represent a mechanism by which repeated exposure to the TRPA1 agonist and environmental toxin, acrolein, drives trigeminovascular sensitization.

4.
J Interv Card Electrophysiol ; 36(1): 71-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23080323

RESUMO

Cardiac resynchronization therapy (CRT) is a commonly used procedure to help patients with drug refractory heart failure (HF) symptoms. More patients with congenital heart disease (CHD) survive to adulthood with the improvements that have occurred as a result of surgical and medical care of these patients. However, patients with CHD may develop ventricular dysfunction and HF and thus be considered for CRT. In this review, we discuss the unique features of CRT in the adult CHD population. We examine the existing data on utilization of CRT in patients with HF and CHD and specifically discuss the limitations in terms of benefit as well as data availability. Finally, we review the specific coronary sinus anatomy and technical considerations for placing a left ventricular lead in patients with CHD.


Assuntos
Terapia de Ressincronização Cardíaca/métodos , Cardiopatias Congênitas/fisiopatologia , Cardiopatias Congênitas/terapia , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Prognóstico , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...