Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 7(3): 1181-92, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25488835

RESUMO

In this article, we show for the first time, both theoretically and empirically, that plasmonic coupling can be used to generate Localized Surface Plasmon Resonances (LSPRs) in transition metal dimeric nano-antennas (NAs) over a broad spectral range (from the visible to the near infrared) and that the spectral position of the resonance can be controlled through morphological variation of the NAs (size, shape, interparticle distance). First, accurate calculations using the generalized Mie theory on spherical dimers demonstrate that we can take advantage of the plasmonic coupling to enhance LSPRs over a broad spectral range for many transition metals (Pt, Pd, Cr, Ni etc.). The LSPR remains broad for low interparticle distances and masks the various hybridized modes within the overall resonance. However, an analysis of the charge distribution on the surface of the nanoparticles reveals these modes and their respective contributions to the observed LSPR. In the case of spherical dimers, the transfer of the oscillator strengths from the "dipolar" mode to higher orders involves a maximum extinction cross-section for intermediate interparticle distances of a few nanometers. The emergence of the LSPR has been then experimentally illustrated with parallelepipedal NAs (monomers and dimers) made of various transition metals (Pt, Pd and Cr) and elaborated by nanolithography. Absolute extinction cross-sections have been measured with the spatial modulation spectroscopy technique over a broad spectral range (300-900 nm) for individual NAs, the morphology of which has been independently characterized by electron microscopy imaging. A clear enhancement of the LSPR has been revealed for a longitudinal excitation and plasmonic coupling has been clearly evidenced in dimers by an induced redshift and broadening of the LSPR compared to monomers. Furthermore, the LSPR has been shown to be highly sensitive to slight modifications of the interparticle distance. All the experimental results are well in agreement with finite element method (FEM) calculations in which the main geometrical parameters characterizing the NAs have been derived from electron microscopy imaging analysis. The main advantage of dimers as compared to monomers lies in the generation of a well-defined and highly enhanced electromagnetic field (the so-called "hot spots") within the interparticle gap that can be exploited in photo-catalysis, magneto-plasmonics or nano-sensing.

2.
Nanotechnology ; 23(46): 465602, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23095344

RESUMO

A great number of works have focused their research on the synthesis, design and optical properties of gold nanoparticles for potential biological applications (bioimaging, biosensing). For this kind of application, sharp gold nanostructures appear to exhibit the more interesting features since their surface plasmon bands are very sensitive to the surrounding medium. In this paper, a complete study of PEGylated gold nanostars and PEGylated bipyramidal-like nanostructures is presented. The nanoparticles are prepared in high yield and their surfaces are covered with a biocompatible polymer. The photophysical properties of gold bipyramids and nanostars, in suspension, are correlated with the optical response of single and isolated objects. The resulting spectra of isolated gold nanoparticles are subsequently correlated to their geometrical structure by transmission electron microscopy. Finally, the PEGylated gold nanoparticles were incubated with melanoma B16-F10 cells. Dark-field microscopy showed that the biocompatible gold nanoparticles were easily internalized and most of them localized within the cells.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Animais , Linhagem Celular Tumoral , Cetrimônio , Compostos de Cetrimônio/química , Endocitose , Ouro/farmacocinética , Histocitoquímica , Teste de Materiais , Camundongos , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Polietilenoglicóis/química , Compostos de Amônio Quaternário/química , Espectrofotometria Ultravioleta , Tensoativos/química
3.
Nanotechnology ; 23(14): 145707, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22433232

RESUMO

A great number of works focus their interest on the study of gold nanoparticle plasmonic properties. Among those, sharp nanostructures appear to exhibit the more interesting features for further developments. In this paper, a complete study on bipyramidal-like gold nanostructures is presented. The nano-objects are prepared in high yield using an original method. This chemical process enables a precise control of the shape and the size of the particles. The specific photophysical properties of gold bipyramids in suspension are ripened by recording the plasmonic response of single and isolated objects. Resulting extinction spectra are precisely correlated to their geometrical structure by mean of electron tomography at the single-particle level. The interplay between the geometrical structure and the optical properties of twisted gold bipyramids is further discussed on the basis of numerical calculations. The influence of several parameters is explored such as the structural aspect ratio or the tip truncation. In the case of an incident excitation polarized along the particle long axis, this study shows how the plasmon resonance position can be sensitive to these parameters and how it can then be efficiently tuned on a large wavelength range.


Assuntos
Tomografia com Microscopia Eletrônica , Ouro/química , Nanoestruturas/química , Ressonância de Plasmônio de Superfície/métodos , Nanotecnologia/métodos , Tamanho da Partícula
4.
ACS Nano ; 5(12): 9450-62, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22087471

RESUMO

Absolute extinction cross sections of individual silver nanocube dimers are measured using spatial modulation spectroscopy in correlation with their transmission electron microscopy images. For very small interparticle distances and an incident light polarized along the dimer axis, we give evidence for a clear splitting of the main dipolar surface plasmon resonance which is found to be essentially induced by cube edge rounding effects. Supported by discrete dipole approximation and finite element method calculations, this phenomenon highlights the high sensitivity of the plasmonic coupling to the exact shape of the effective capacitor formed by the facing surfaces of both particles, especially in the regime of very close proximity.


Assuntos
Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Prata/química , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Dimerização , Luz , Teste de Materiais , Espalhamento de Radiação , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...