Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 7748, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237506

RESUMO

Evolutionary annotation of genome maintenance (GM) proteins has conventionally been established by remote relationships within protein sequence databases. However, often no significant relationship can be established. Highly sensitive approaches to attain remote homologies based on iterative profile-to-profile methods have been developed. Still, these methods have not been systematically applied in the evolutionary annotation of GM proteins. Here, by applying profile-to-profile models, we systematically survey the repertoire of GM proteins from bacteria to man. We identify multiple GM protein candidates and annotate domains in numerous established GM proteins, among other PARP, OB-fold, Macro, TUDOR, SAP, BRCT, KU, MYB (SANT), and nuclease domains. We experimentally validate OB-fold and MIS18 (Yippee) domains in SPIDR and FAM72 protein families, respectively. Our results indicate that, surprisingly, despite the immense interest and long-term research efforts, the repertoire of genome stability caretakers is still not fully appreciated.


Assuntos
Domínios Proteicos , Humanos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Instabilidade Genômica , Evolução Molecular , DNA/química , DNA/metabolismo , Bases de Dados de Proteínas , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Modelos Moleculares , Anotação de Sequência Molecular , Bactérias/genética , Bactérias/metabolismo
2.
Gastro Hep Adv ; 2(5): 711-720, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-39129874

RESUMO

Background and Aims: Macrophages play an important role in the development of nonalcoholic fatty liver disease (NAFLD) and its progression to nonalcoholic steatohepatitis (NASH). In this study, we investigated the hepatic expression of the macrophage scavenger receptor CD163 and the plasma level of its shed soluble form (sCD163) in patients with obesity and NASH, non-NASH NAFLD (NAFL), or healthy livers (no NAFLD). Methods: Paired liver biopsies and plasma samples were collected from 61 patients with obesity (body mass index ≥35). Hepatic expression of CD163 was analyzed by immunohistochemistry and data-independent acquisition mass spectrometry, whilst plasma levels of sCD163 were determined by enzyme-linked immunosorbent assay and data-independent acquisition mass spectrometry. NAFLD stage and activity were assessed using the Kleiner fibrosis and NASH Clinical Research Network (NAS-CRN) scoring system. Results: sCD163 turned out as a promising predictor of NASH with an area under the receiver-operating characteristic curve of 0.78 [0.65;0.92] (P = .0008). sCD163 increased with more severe NAFLD both in univariate (odds ratio [OR] = 3.31[1.80;6.11], P < .001) and multivariable ordinal logistic regression adjusting for NAFLD risk factors (OR = 2.02 [1.03;3.97], P = .042). On the other hand, hepatic expression of CD163 was negatively associated with more severe NAFLD in univariate ordinal logistic regression determined by immunohistochemistry (OR = 0.91[0.84;0.98], P = .015) and proteomics (OR = 0.13[0.02;0.80], P = .028). Taking NAFLD risk factors into account, hepatic expression of CD163 was only associated with the fibrosis stage (OR = 0.01 [0.0003;0.21], P = .004). Accordingly, hepatic CD163 surface expression and sCD163 were negatively correlated (rho = -0.478, P = .0001). Conclusion: An increased plasma sCD163 and a concurrent decreased hepatic expression of CD163 are strongly associated with NAFLD in obese patients.

3.
Cytotherapy ; 24(12): 1211-1224, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36192337

RESUMO

BACKGROUND AIMS: Although bone marrow-derived mesenchymal stromal cells (MSCs) have demonstrated success in pre-clinical studies, they have shown only mild therapeutic effects in clinical trials. Hypoxia pre-conditioning may optimize the performance of bone marrow-derived MSCs because it better reflects the physiological conditions of their origin. It is not known whether changes in the protein profile caused by hypoxia in MSCs can be extended to the extracellular vesicles (EVs) released from them. The aim of this study was to evaluate the proteomics profile of MSCs and their EVs under normoxic and hypoxic conditions. METHODS: Bone marrow-derived MSCs were isolated from six healthy male Wistar rats. After achieving 80% confluence, MSCs were subjected to normoxia (MSC-Norm) (21% oxygen, 5% carbon dioxide, 74% nitrogen) or hypoxia (MSC-Hyp) (1% oxygen, 5% carbon dioxide, 94% nitrogen) for 48 h. Cell viability and oxygen consumption rate were assessed. EVs were extracted from MSCs for each condition (EV-Norm and EV-Hyp) by ultracentrifugation. Total proteins were isolated from MSCs and EVs and prepared for mass spectrometry. EVs were characterized by nanoparticle tracking analysis. Proteomics data were analyzed by PatternLab 4.0, Search Tool for the Retrieval of Interacting Genes/Proteins, Gene Ontology, MetaboAnalyst and Reactome software. RESULTS: Cell viability was higher in MSC-Hyp than MSC-Norm (P = 0.007). Basal respiration (P = 0.001), proton leak (P = 0.004) and maximal respiration (P = 0.014) were lower in MSC-Hyp than MSC-Norm, and no changes in adenosine triphosphate-linked and residual respiration were observed. The authors detected 2177 proteins in MSC-Hyp and MSC-Norm, of which 147 were identified in only MSC-Hyp and 512 were identified in only MSC-Norm. Furthermore, 718 proteins were identified in EV-Hyp and EV-Norm, of which 293 were detected in only EV-Hyp and 30 were detected in only EV-Norm. Both MSC-Hyp and EV-Hyp showed enrichment of pathways and biological processes related to glycolysis, the immune system and extracellular matrix organization. CONCLUSIONS: MSCs subjected to hypoxia showed changes in their survival and metabolic activity. In addition, MSCs under hypoxia released more EVs, and their content was related to expression of regulatory proteins of the immune system and extracellular matrix organization. Because of the upregulation of proteins involved in glycolysis, gluconeogenesis and glucose uptake during hypoxia, production of reactive oxygen species and expression of immunosuppressive properties may be affected.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Animais , Ratos , Masculino , Proteômica , Dióxido de Carbono/metabolismo , Ratos Wistar , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , Nitrogênio/metabolismo
4.
Front Cell Infect Microbiol ; 12: 926352, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937696

RESUMO

Background: Extracellular vesicles (EVs) are a valuable source of biomarkers and display the pathophysiological status of various diseases. In COVID-19, EVs have been explored in several studies for their ability to reflect molecular changes caused by SARS-CoV-2. Here we provide insights into the roles of EVs in pathological processes associated with the progression and severity of COVID-19. Methods: In this study, we used a label-free shotgun proteomic approach to identify and quantify alterations in EV protein abundance in severe COVID-19 patients. We isolated plasma extracellular vesicles from healthy donors and patients with severe COVID-19 by size exclusion chromatography (SEC). Then, flow cytometry was performed to assess the origin of EVs and to investigate the presence of circulating procoagulant EVs in COVID-19 patients. A total protein extraction was performed, and samples were analyzed by nLC-MS/MS in a Q-Exactive HF-X. Finally, computational analysis was applied to signify biological processes related to disease pathogenesis. Results: We report significant changes in the proteome of EVs from patients with severe COVID-19. Flow cytometry experiments indicated an increase in total circulating EVs and with tissue factor (TF) dependent procoagulant activity. Differentially expressed proteins in the disease groups were associated with complement and coagulation cascades, platelet degranulation, and acute inflammatory response. Conclusions: The proteomic data reinforce the changes in the proteome of extracellular vesicles from patients infected with SARS-CoV-2 and suggest a role for EVs in severe COVID-19.


Assuntos
COVID-19 , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Humanos , Proteoma/metabolismo , Proteômica/métodos , SARS-CoV-2 , Espectrometria de Massas em Tandem
5.
Front Cell Infect Microbiol ; 12: 920425, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782121

RESUMO

Chikungunya virus (CHIKV) is a single-stranded positive RNA virus that belongs to the genus Alphavirus and is transmitted to humans by infected Aedes aegypti and Aedes albopictus bites. In humans, CHIKV usually causes painful symptoms during acute and chronic stages of infection. Conversely, virus-vector interaction does not disturb the mosquito's fitness, allowing a persistent infection. Herein, we studied CHIKV infection of Ae. aegypti Aag-2 cells (multiplicity of infection (MOI) of 0.1) for 48 h through label-free quantitative proteomic analysis and transmission electron microscopy (TEM). TEM images showed a high load of intracellular viral cargo at 48 h postinfection (hpi), as well as an unusual elongated mitochondria morphology that might indicate a mitochondrial imbalance. Proteome analysis revealed 196 regulated protein groups upon infection, which are related to protein synthesis, energy metabolism, signaling pathways, and apoptosis. These Aag-2 proteins regulated during CHIKV infection might have roles in antiviral and/or proviral mechanisms and the balance between viral propagation and the survival of host cells, possibly leading to the persistent infection.


Assuntos
Aedes , Febre de Chikungunya , Vírus Chikungunya , Animais , Humanos , Mosquitos Vetores , Proteoma , Proteômica
6.
Cell Death Discov ; 8(1): 324, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842415

RESUMO

Coronavirus disease 2019 (COVID-19) has affected over 400 million people worldwide, leading to 6 million deaths. Among the complex symptomatology of COVID-19, hypercoagulation and thrombosis have been described to directly contribute to lethality, pointing out platelets as an important SARS-CoV-2 target. In this work, we explored the platelet proteome of COVID-19 patients through a label-free shotgun proteomics approach to identify platelet responses to infection, as well as validation experiments in a larger patient cohort. Exclusively detected proteins (EPs) and differentially expressed proteins (DEPs) were identified in the proteomic dataset and thus classified into biological processes to map pathways correlated with pathogenesis. Significant changes in the expression of proteins related to platelet activation, cell death, and antiviral response through interferon type-I were found in all patients. Since the outcome of COVID-19 varies highly among individuals, we also performed a cross-comparison of proteins found in survivors and nonsurvivors. Proteins belonging to the translation pathway were strongly highlighted in the nonsurvivor group. Moreover, the SARS-CoV-2 genome was fully sequenced in platelets from five patients, indicating viral internalization and preprocessing, with CD147 as a potential entry route. In summary, platelets play a significant role in COVID-19 pathogenesis via platelet activation, antiviral response, and disease severity.

7.
Microbiome ; 10(1): 65, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459226

RESUMO

BACKGROUND: Critically ill 2019 coronavirus disease (COVID-19) patients under invasive mechanical ventilation (IMV) are 10 to 40 times more likely to die than the general population. Although progression from mild to severe COVID-19 has been associated with hypoxia, uncontrolled inflammation, and coagulopathy, the mechanisms involved in the progression to severity are poorly understood. METHODS: The virome of tracheal aspirates (TA) from 25 COVID-19 patients under IMV was assessed through unbiased RNA sequencing (RNA-seq), and correlation analyses were conducted using available clinical data. Unbiased sequences from nasopharyngeal swabs (NS) from mild cases and TA from non-COVID patients were included in our study for further comparisons. RESULTS: We found higher levels and differential expression of human endogenous retrovirus K (HERV-K) genes in TA from critically ill and deceased patients when comparing nasopharyngeal swabs from mild cases to TA from non-COVID patients. In critically ill patients, higher HERV-K levels were associated with early mortality (within 14 days of diagnosis) in the intensive care unit. Increased HERV-K expression in deceased patients was associated with IL-17-related inflammation, monocyte activation, and an increased consumption of clotting/fibrinolysis factors. Moreover, increased HERV-K expression was detected in human primary monocytes from healthy donors after experimental SARS-CoV-2 infection in vitro. CONCLUSION: Our data implicate the levels of HERV-K transcripts in the physiopathology of COVID-19 in the respiratory tract of patients under invasive mechanical ventilation. Video abstract.


Assuntos
COVID-19 , Retrovirus Endógenos , Estado Terminal , Retrovirus Endógenos/genética , Humanos , Inflamação , Sistema Respiratório , SARS-CoV-2
8.
Front Immunol ; 12: 686480, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220840

RESUMO

Sjögren's Syndrome (SS) is an autoimmune exocrinopathy characterized by the progressive damage of salivary and lacrimal glands associated with lymphocytic infiltration. Identifying new non-invasive biomarkers for SS diagnosis remains a challenge, and alterations in saliva composition reported in patients turn this fluid into a source of potential biomarkers. Among these, proteases are promising candidates since they are involved in several key physio-pathological processes. This study evaluated differentially expressed proteases in SS individuals' saliva using synthetic fluorogenic substrates, zymography, ELISA, and proteomic approaches. Here we reported, for the first time, increased activity of the serine protease dipeptidyl peptidase-4/CD26 (DPP4/CD26) in pSS saliva, the expression level of which was corroborated by ELISA assay. Gelatin zymograms showed that metalloproteinase proteolytic band profiles differed significantly in intensity between control and SS groups. Focusing on matrix metalloproteinase-9 (MMP9) expression, an increased tendency in pSS saliva (p = 0.0527) was observed compared to the control group. Samples of control, pSS, and sSS were analyzed by mass spectrometry to reveal a general panorama of proteases in saliva. Forty-eight protein groups of proteases were identified, among which were the serine proteases cathepsin G (CTSG), neutrophil elastase (ELANE), myeloblastin (PRTN3), MMP9 and several protease inhibitors. This work paves the way for proteases to be explored in the future as biomarkers, emphasizing DPP4 by its association in several autoimmune and inflammatory diseases. Besides its proteolytic role, DPP4/CD26 acts as a cell surface receptor, signal transduction mediator, adhesion and costimulatory protein involved in T lymphocytes activation.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Peptídeo Hidrolases/análise , Proteômica/métodos , Saliva/metabolismo , Síndrome de Sjogren/metabolismo , Adulto , Biomarcadores/metabolismo , Estudos de Casos e Controles , Catepsina G , Feminino , Humanos , Elastase de Leucócito , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Serina Endopeptidases , Transdução de Sinais , Síndrome de Sjogren/diagnóstico
9.
Front Cell Infect Microbiol ; 11: 798924, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047420

RESUMO

Triatomines have evolved salivary glands that produce versatile molecules with various biological functions, including those leading their interactions with vertebrate hosts' hemostatic and immunological systems. Here, using high-throughput transcriptomics and proteomics, we report the first sialome study on the synanthropic triatomine Triatoma sordida. As a result, 57,645,372 reads were assembled into 26,670 coding sequences (CDS). From these, a total of 16,683 were successfully annotated. The sialotranscriptomic profile shows Lipocalin as the most abundant protein family within putative secreted transcripts. Trialysins and Kazal-type protease inhibitors have high transcript levels followed by ubiquitous protein families and enzyme classes. Interestingly, abundant trialysin and Kazal-type members are highlighted in this triatomine sialotranscriptome. Furthermore, we identified 132 proteins in T. sordida salivary gland soluble extract through LC-MS/MS spectrometry. Lipocalins, Hemiptera specific families, CRISP/Antigen-5 and Kazal-type protein inhibitors proteins were identified. Our study provides a comprehensive description of the transcript and protein compositions of the salivary glands of T. sordida. It significantly enhances the information in the Triatominae sialome databanks reported so far, improving the understanding of the vector's biology, the hematophagous behaviour, and the Triatominae subfamily's evolution.


Assuntos
Triatoma , Triatominae , Animais , Cromatografia Líquida , Humanos , Insetos Vetores , Espectrometria de Massas em Tandem , Triatoma/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-32984079

RESUMO

Triatomines are hematophagous insects that transmit Trypanosoma cruzi, the etiological agent of Chagas disease. This neglected tropical disease represents a global health issue as it is spreading worldwide. The saliva of Triatominae contains miscellaneous proteins crucial for blood feeding acquisition, counteracting host's hemostasis while performing vasodilatory, anti-platelet and anti-coagulant activities, besides modulating inflammation and immune responses. Since a set of biological processes are mediated by protein complexes, here, the sialocomplexomes (salivary protein complexes) of five species of Triatominae were studied to explore the protein-protein interaction networks. Salivary multiprotein complexes from Triatoma infestans, Triatoma dimidiata, Dipetalogaster maxima, Rhodnius prolixus, and Rhodnius neglectus were investigated by Blue-Native- polyacrylamide gel electrophoresis coupled with liquid chromatography tandem mass spectrometry. More than 70 protein groups, uncovering the landscape of the Triatominae salivary interactome, were revealed. Triabin, actin, thioredoxin peroxidase and an uncharacterized protein were identified in sialocomplexes of the five species, while hexamerin, heat shock protein and histone were identified in sialocomplexes of four species. Salivary proteins related to triatomine immunity as well as those required during blood feeding process such as apyrases, antigen 5, procalins, and nitrophorins compose different complexes. Furthermore, unique proteins for each triatomine species were revealed. This study represents the first Triatominae sialocomplexome reference to date and shows that the approach used is a reliable tool for the analysis of Triatominae salivary proteins assembled into complexes.


Assuntos
Triatoma , Triatominae , Trypanosoma cruzi , Animais , Insetos Vetores , Proteômica , Saliva
12.
Parasit Vectors ; 13(1): 297, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522239

RESUMO

BACKGROUND: Mayaro virus (MAYV) is responsible for a mosquito-borne tropical disease with clinical symptoms similar to dengue or chikungunya virus fevers. In addition to the recent territorial expansion of MAYV, this virus may be responsible for an increasing number of outbreaks. Currently, no vaccine is available. Aedes aegypti is promiscuous in its viral transmission and thus an interesting model to understand MAYV-vector interactions. While the life-cycle of MAYV is known, the mechanisms by which this arbovirus affects mosquito host cells are not clearly understood. METHODS: After defining the best conditions for cell culture harvesting using the highest virus titer, Ae. aegypti Aag-2 cells were infected with a Brazilian MAYV isolate at a MOI of 1 in order to perform a comparative proteomic analysis of MAYV-infected Aag-2 cells by using a label-free semi-quantitative bottom-up proteomic analysis. Time-course analyses were performed at 12 and 48 h post-infection (hpi). After spectrum alignment between the triplicates of each time point and changes of the relative abundance level calculation, the identified proteins were annotated and using Gene Ontology database and protein pathways were annotated using the Kyoto Encyclopedia of Genes and Genomes. RESULTS: After three reproducible biological replicates, the total proteome analysis allowed for the identification of 5330 peptides and the mapping of 459, 376 and 251 protein groups, at time 0, 12 hpi and 48 hpi, respectively. A total of 161 mosquito proteins were found to be differentially abundant during the time-course, mostly related to host cell processes, including redox metabolism, translation, energy metabolism, and host cell defense. MAYV infection also increased host protein expression implicated in viral replication. CONCLUSIONS: To our knowledge, this first proteomic time-course analysis of MAYV-infected mosquito cells sheds light on the molecular basis of the viral infection process and host cell response during the first 48 hpi. Our data highlight several mosquito proteins modulated by the virus, revealing that MAYV manipulates mosquito cell metabolism for its propagation.


Assuntos
Aedes/citologia , Aedes/virologia , Arbovírus/fisiologia , Interações entre Hospedeiro e Microrganismos/genética , Proteômica/métodos , Animais , Arbovírus/genética , Linhagem Celular , Metabolismo Energético , Proteínas de Insetos/análise , Proteínas de Insetos/genética , Mosquitos Vetores/virologia , Replicação Viral
13.
PLoS One ; 14(11): e0225386, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31756194

RESUMO

Chagas disease is caused by the protozoan Trypanosoma cruzi, affecting around 8 million people worldwide. After host cell invasion, the infective trypomastigote form remains 2-4 hours inside acidic phagolysosomes to differentiate into replicative amastigote form. In vitro acidic-pH-induced axenic amastigogenesis was used here to study this step of the parasite life cycle. After three hours of trypomastigote incubation in amastigogenesis promoting acidic medium (pH 5.0) or control physiological pH (7.4) medium samples were subjected to three rounds of centrifugation followed by ultrafiltration of the supernatants. The resulting exoproteome samples were trypsin digested and analysed by nano flow liquid chromatography coupled to tandem mass spectrometry. Computational protein identification searches yielded 271 and 483 protein groups in the exoproteome at pH 7.4 and pH 5.0, respectively, with 180 common proteins between both conditions. The total amount and diversity of proteins released by parasites almost doubled upon acidic incubation compared to control. Overall, 76.5% of proteins were predicted to be secreted by classical or non-classical pathways and 35.1% of these proteins have predicted transmembrane domains. Classical secretory pathway analysis showed an increased number of mucins and mucin-associated surface proteins after acidic incubation. However, the number of released trans-sialidases and surface GP63 peptidases was higher at pH 7.4. Trans-sialidases and mucins are anchored to the membrane and exhibit an enzyme-substrate relationship. In general, mucins are glycoproteins with immunomodulatory functions in Chagas disease, present mainly in the epimastigote and trypomastigote surfaces and could be enzymatically cleaved and released in the phagolysosome during amastigogenesis. Moreover, evidence for flagella discard during amastigogenesis are addressed. This study provides the first comparative analysis of the exoproteome during amastigogenesis, and the presented data evidence the dynamism of its profile in response to acidic pH-induced differentiation.


Assuntos
Doença de Chagas/parasitologia , Proteômica/métodos , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/patogenicidade , Doença de Chagas/metabolismo , Cromatografia Líquida , Células HeLa , Interações Hospedeiro-Parasita , Humanos , Concentração de Íons de Hidrogênio , Estágios do Ciclo de Vida , Espectrometria de Massas em Tandem , Trypanosoma cruzi/metabolismo
15.
J Proteomics ; 192: 102-113, 2019 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-30165259

RESUMO

Spider venoms are composed of a complex mixture of bioactive molecules. The structural and functional characterization of these molecules in the venom of the Brazilian spider Acanthoscurria natalensis, has been little explored. The venom was fractionated using reversed-phase liquid chromatography. The fraction with hyaluronidase activity was named AnHyal. The partial sequencing of AnHyal revealed the presence of a CRISP-like protein, in addition to hyaluronidase, comprising 67% coverage for hyaluronidase from Brachypelma vagans and 82% for CRISP-like protein from Grammostola rosea. 1D BN-PAGE zymogram assays of AnHyal confirmed the presence of enzymatically active 53 kDa monomer and 124 and 178 kDa oligomers. The decomposition of the complexes by 2D BN/SDS-PAGE zymogram assays showed two subunits, 53 (AnHyalH) and 44 kDa (AnHyalC), with sequence similarity to hyaluronidase and CRISP proteins, respectively. The secondary structure of AnHyal is composed by 36% of α-helix. AnHyal presented maximum activity at pH between 4.0 and 6.0 and 30 and 60 °C, showed specificity to hyaluronic acid substrate and presented a KM of 617.9 µg/mL. Our results showed that hyaluronidase and CRISP proteins can form a complex and the CRISP protein may contribute to the enzymatic activity of AnHyalH.


Assuntos
Proteínas de Artrópodes , Hialuronoglucosaminidase , Venenos de Aranha/química , Aranhas/enzimologia , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/isolamento & purificação , Estabilidade Enzimática , Hialuronoglucosaminidase/química , Hialuronoglucosaminidase/isolamento & purificação , Concentração de Íons de Hidrogênio , Estrutura Secundária de Proteína , Especificidade por Substrato
16.
Biochemistry ; 56(11): 1645-1655, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28252287

RESUMO

Royal jelly (RJ) triggers the development of female honeybee larvae into queens. This effect has been attributed to the presence of major royal jelly protein 1 (MRJP1) in RJ. MRJP1 isolated from royal jelly is tightly associated with apisimin, a 54-residue α-helical peptide that promotes the noncovalent assembly of MRJP1 into multimers. No high-resolution structural data are available for these complexes, and their binding stoichiometry remains uncertain. We examined MRJP1/apisimin using a range of biophysical techniques. We also investigated the behavior of deglycosylated samples, as well as samples with reduced apisimin content. Our mass spectrometry (MS) data demonstrate that the native complexes predominantly exist in a (MRJP14 apisimin4) stoichiometry. Hydrogen/deuterium exchange MS reveals that MRJP1 within these complexes is extensively disordered in the range of residues 20-265. Marginally stable secondary structure (likely antiparallel ß-sheet) exists around residues 266-432. These weakly structured regions interchange with conformers that are extensively unfolded, giving rise to bimodal (EX1) isotope distributions. We propose that the native complexes have a "dimer of dimers" quaternary structure in which MRJP1 chains are bridged by apisimin. Specifically, our data suggest that apisimin acts as a linker that forms hydrophobic contacts involving the MRJP1 segment 316VLFFGLV322. Deglycosylation produces large soluble aggregates, highlighting the role of glycans as aggregation inhibitors. Samples with reduced apisimin content form dimeric complexes with a (MRJP12 apisimin1) stoichiometry. The information uncovered in this work will help pave the way toward a better understanding of the unique physiological role played by MRJP1 during queen differentiation.


Assuntos
Ácidos Graxos/química , Glicoproteínas/química , Proteínas de Insetos/química , Proteínas Intrinsicamente Desordenadas/química , Chaperonas Moleculares/química , Polissacarídeos/química , Sequência de Aminoácidos , Animais , Abelhas/crescimento & desenvolvimento , Abelhas/metabolismo , Medição da Troca de Deutério , Ácidos Graxos/fisiologia , Expressão Gênica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Espectrometria de Massas , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Polissacarídeos/metabolismo , Multimerização Proteica
17.
Mol Cell Proteomics ; 13(12): 3457-72, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25225356

RESUMO

Chagas disease is a tropical neglected disease endemic in Latin America caused by the protozoan Trypanosoma cruzi. The parasite has four major life stages: epimastigote, metacyclic trypomastigote, bloodstream trypomastigote, and amastigote. The differentiation from infective trypomastigotes into replicative amastigotes, called amastigogenesis, takes place in vivo inside mammalian host cells after a period of incubation in an acidic phagolysosome. This differentiation process can be mimicked in vitro by incubating tissue-culture-derived trypomastigotes in acidic DMEM. Here we used this well-established differentiation protocol to perform a comprehensive quantitative proteomic and phosphoproteomic analysis of T. cruzi amastigogenesis. Samples from fully differentiated forms and two biologically relevant intermediate time points were Lys-C/trypsin digested, iTRAQ-labeled, and multiplexed. Subsequently, phosphopeptides were enriched using a TiO2 matrix. Non-phosphorylated peptides were fractionated via hydrophilic interaction liquid chromatography prior to LC-MS/MS analysis. LC-MS/MS and bioinformatics procedures were used for protein and phosphopeptide quantitation, identification, and phosphorylation site assignment. We were able to identify regulated proteins and pathways involved in coordinating amastigogenesis. We also observed that a significant proportion of the regulated proteins were membrane proteins. Modulated phosphorylation events coordinated by protein kinases and phosphatases that are part of the signaling cascade induced by incubation in acidic medium were also evinced. To our knowledge, this work is the most comprehensive quantitative proteomics study of T. cruzi amastigogenesis, and these data will serve as a trustworthy basis for future studies, and possibly for new potential drug targets.


Assuntos
Estágios do Ciclo de Vida/genética , Peptídeos/química , Fosfoproteínas/genética , Proteínas de Protozoários/genética , Trypanosoma cruzi/genética , Meios de Cultura/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Concentração de Íons de Hidrogênio , Estágios do Ciclo de Vida/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Anotação de Sequência Molecular , Mapeamento de Peptídeos , Peptídeos/genética , Peptídeos/metabolismo , Fosfoproteínas/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteômica/métodos , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA