Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 318: 137919, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36702418

RESUMO

Industrial wastewater treatment techniques are one of the biggest challenges of the scientific community that necessitate an increased consciousness to address water scarcity worldwide. Herein, an eco-friendly and cost-effective process was demonstrated to cope with tannery, textile and pharmaceutical dye wastes through the co-precipitation of highly reusable Fe-doped CdAl2O4 samples. The XRD studies exposed the space group R 3‾ with no secondary phase step being found for all samples. The outcomes of optical absorbance spectra demonstrate that Fe doping diminished the energy gap from 3.66 to 1.67 eV. HR-TEM images of existing spherical particles and some of the particles' rod-like structures with little agglomeration were found for Fe (0.075 M) doped CdAl2O4 nanoparticles. The PL emission outcomes show that Fe doping effectively prevented the charge carrier's recombination in CdAl2O4 during photocatalysis. All Fe-doped CdAl2O4 samples demonstrated higher photodegradation behaviors towards the effectual degradation of both dye solutions as compared to pure CdAl2O4 samples. Particularly, Fe (0.075 M)-doped CdAl2O4 samples exhibited improved photodegradation performance of 93 and 95% for both dye solutions. The amount of photodegradation was noticed to rely on dye pH, irradiation time, catalyst dosage, initial dye amount, and reactive species. The recyclability of the Fe (0.075 M) doped CdAl2O4 nanoparticles denotes that 78 and 82% of BB and BG were removed up to the 6th run of usage. The outcomes of trapping tests,.OH- and h+ radicals were the major Scavenging in the photodegradation reaction. COD studies affirmed the whole mineralization of BB and BG dye molecules. It is expected that our present examination could offer to improve various spinal oxide materials for the photodegradation activity of pharmaceutical contaminants and environmental issues and can also resolve energy storage applications.


Assuntos
Poluentes Ambientais , Nanopartículas , Nanopartículas/química , Fotólise , Catálise , Concentração de Íons de Hidrogênio , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...